S Sheik, DR Muir. 2025. The road to commercial success for neuromorphic technologies. Nature Communications163586. DOI: 10.1038/s41467-025-57352-1. OnlinePDFS Haghighatshoar, DR Muir. 2025. Low-power SNN-based audio source localisation using a Hilbert Transform spike encoding scheme. Nature Communications Engineering418. DOI: 10.1038/s44172-025-00359-9. OnlinePDFJ Yik, K Van den Berghe, D den Blanken, Y Bouhadjar et al. 2025. The neurobench framework for benchmarking neuromorphic computing algorithms and systems. Nature Communications161545. DOI: 10.1038/s41467-025-56739-4. OnlinePDF
2024
JE Pedersen, S Abreu, M Jobst, G Lenz et al. 2024. Neuromorphic Intermediate Representation: A Unified Instruction Set for Interoperable Brain-Inspired Computing. Nat. Commun.15:8122. DOI: 10.1038/s41467-024-52259-9. OnlinePDFU Çakal, I Ulusoy, DR Muir. 2024. Gradient-descent hardware-aware training and deployment for mixed-signal neuromorphic processors. Neuromorphic Computing and Engineering4:014011. DOI: 10.1088/2634-4386/ad2ec3. OnlinePDFP Znamenskiy, M-H Kim, DR Muir, MF Iacaruso et al. 2024. Functional specificity of recurrent inhibition in visual cortex. Neuron1126:991–1000. DOI: 10.1016/j.neuron.2023.12.013. OnlinePDF
2023
J Yik, K Van den Berghe, D den Blanken, Y Bouhadjar et al. 2023. NeuroBench: Advancing neuromorphic computing through collaborative, fair and representative benchmarking. arXiv. OnlinePDF
2022
H Bos, DR Muir. 2022. Sub-mW Neuromorphic SNN audio processing applications with Rockpool and Xylo. ESSCIRC2022. OnlinePDFJ Buchel, F Faber, DR Muir. 2022. Network Insensitivity to Parameter Noise via Parameter Attack During Training. ICLR2022. OnlinePDF
2021
J Buchel, D Zendrikov, S Solinas, G Indiveri et al. 2021. Supervised training of spiking neural networks for robust deployment on mixed-signal neuromorphic processors. Nat. Scientific Reports11:23376. DOI: 10.1038/s41598-021-02779-x. OnlinePDF