Stochastic descent optimisation in Matlab

Using the Adam optimiser

21st February, 2017

Seeking a minimum

Seeking a minimum

Image credit: CPGXK

Stochastic gradient descent is a powerful tool for optimisation, which relies on estimation of gradients over small, randomly-selected batches of data. This approach is efficient (since gradients only need to be evaluated over few data points at a time) and uses the noise inherent in the stochastic gradient estimates to help get around local minima. This is a Matlab implementation of a recent powerful SGD algorithm.

The Adam optimiser from Kingma and Ba (2015) maintains estimates of the moments of the gradient independently for each parameter, with separate effective learning rates for each parameter. This gives the algorithm the benefits of accelerating over areas of the loss function with low-magnitude gradients; the ability to handle problems where individual parameters are poorly-scaled with respect to each other; and to push past small local minima in the loss function surface. Adam is designed to work on stochastic gradient descent problems; i.e. when only small batches of data are used to estimate the gradient on each iteration, or when stochastic dropout regularisation is used (Hinton et al. 2012).

Getting the code

Clone the git repository: github.

Usage

[x, fval, exitflag, output] = fmin_adam(fun, x0 <, stepSize, beta1, beta2, epsilon, nEpochSize, options>)

Examples

Simple regression problem with gradients

Set up a simple linear regression problem \( y = x\cdot\phi_1 + \phi_2 + \zeta \), where \(\zeta \sim N(0, 0.1) \). We'll take \( \phi = \left[3, 2\right] \) for this example. Let's draw some samples from this problem:

nDataSetSize = 1000;
vfInput = rand(1, nDataSetSize);
phiTrue = [3 2];
fhProblem = @(phi, vfInput) vfInput .* phi(1) + phi(2);
vfResp = fhProblem(phiTrue, vfInput) + randn(1, nDataSetSize) * .1;
plot(vfInput, vfResp, '.'); hold;

Now we define a cost function to minimise, which returns analytical gradients:

function [fMSE, vfGrad] = LinearRegressionMSEGradients(phi, vfInput, vfResp)
   % - Compute mean-squared error using the current parameter estimate
   vfRespHat = vfInput .* phi(1) + phi(2);
   vfDiff = vfRespHat - vfResp;
   fMSE = mean(vfDiff.^2) / 2;
   
   % - Compute the gradient of MSE for each parameter
   vfGrad(1) = mean(vfDiff .* vfInput);
   vfGrad(2) = mean(vfDiff);
end

Initial parameters phi0 are Normally distributed. Call the fmin_adam optimiser with a learning rate of 0.01.

phi0 = randn(2, 1);
phiHat = fmin_adam(@(phi)LinearRegressionMSEGradients(phi, vfInput, vfResp), phi0, 0.01)
plot(vfInput, fhProblem(phiHat, vfInput), '.');
   
Output:
   
   Iteration    Func-count         f(x)   Improvement   Step-size
   ----------   ----------   ----------   ----------   ----------
         2130         4262       0.0051        5e-07      0.00013
   ----------   ----------   ----------   ----------   ----------
   
   Finished optimization.
      Reason: Function improvement [5e-07] less than TolFun [1e-06].
   
   phiHat =
      2.9498
      2.0273

Linear regression with minibatches

Set up a simple linear regression problem, as above.

nDataSetSize = 1000;
vfInput = rand(1, nDataSetSize);
phiTrue = [3 2];
fhProblem = @(phi, vfInput) vfInput .* phi(1) + phi(2);
vfResp = fhProblem(phiTrue, vfInput) + randn(1, nDataSetSize) * .1;

Configure minibatches. Minibatches contain random sets of indices into the data.

nBatchSize = 50;
nNumBatches = 100;
mnBatches = randi(nDataSetSize, nBatchSize, nNumBatches);
cvnBatches = mat2cell(mnBatches, nBatchSize, ones(1, nNumBatches));
figure; hold;
cellfun(@(b)plot(vfInput(b), vfResp(b), '.'), cvnBatches);

Define the function to minimise; in this case, the mean-square error over the regression problem. The iteration index nIter defines which mini-batch to evaluate the problem over.

fhBatchInput = @(nIter) vfInput(cvnBatches{mod(nIter, nNumBatches-1)+1});
fhBatchResp = @(nIter) vfResp(cvnBatches{mod(nIter, nNumBatches-1)+1});
fhCost = @(phi, nIter) mean((fhProblem(phi, fhBatchInput(nIter)) - fhBatchResp(nIter)).^2);

Turn off analytical gradients for the adam optimiser, and ensure that we permit sufficient function calls.

sOpt = optimset('fmin_adam');
sOpt.GradObj = 'off';
sOpt.MaxFunEvals = 1e4;

Call the fmin_adam optimiser with a learning rate of 0.1. Initial parameters are Normally distributed.

phi0 = randn(2, 1);
phiHat = fmin_adam(fhCost, phi0, 0.1, [], [], [], [], sOpt)

The output of the optimisation process (which will differ over random data and random initialisations):

   Iteration    Func-count         f(x)   Improvement   Step-size
   ----------   ----------   ----------   ----------   ----------
         711         2848           0.3       0.0027      3.8e-06
   ----------   ----------   ----------   ----------   ----------
   
   Finished optimization.
      Reason: Step size [3.8e-06] less than TolX [1e-05].
   
   phiHat =
      2.8949
      1.9826

Detailed usage

Input arguments

fun is a function handle [fCost <, vfCdX>] = @(x <, nIter>) defining the function to minimise . It must return the cost at the parameter x, optionally evaluated over a mini-batch of data. If analytical gradients are available (recommended), then fun must return the gradients in vfCdX, evaluated at x (optionally over a mini-batch). If analytical gradients are not available, then complex-step finite difference estimates will be used.

To use analytical gradients (default), set options.GradObj = 'on'. To force the use of finite difference gradient estimates, set options.GradObj = 'off'.

fun must be deterministic in its calculation of fCost and vfCdX, even if mini-batches are used. To this end, fun can accept a parameter nIter which specifies the current iteration of the optimisation algorithm. fun must return estimates over identical problems for a given value of nIter.

Steps that do not lead to a reduction in the function to be minimised are not taken.

Output arguments

x will be a set of parameters estimated to minimise fCost. fval will be the value returned from fun at x.

exitflag will be an integer value indicating why the algorithm terminated:

output will be a structure containing information about the optimisation process:

The optional parameters stepSize, beta1, beta2 and epsilon are parameters of the Adam optimisation algorithm (see Kingma and Ba 2015). Default values of {1e-3, 0.9, 0.999, sqrt(eps)} are reasonable for most problems.

The optional argument nEpochSize specifies how many iterations comprise an epoch. This is used in the convergence detection code.

The optional argument options is used to control the optimisation process (see optimset). Relevant fields are:

References

Diederik P. Kingma, Jimmy Ba. “Adam: A Method for Stochastic Optimization”, ICLR 2015. (arxiv).

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhutdinov. 2012. “Improving neural networks by preventing co-adaptation of feature detectors.” arXiv preprint. (arxiv).

Photo credit

Rolling by CPGXK. (cc 2.0) by-nc-nd