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Abstract. In this paper, we outline an architecture for supporting real time autonomous vision in 
small devices.  Our vision processor performs data reduction at the point of image capture, using 
re-configurable hardware devices to extract and describe image features.  By implementing our 
design on FPGAs, the vision processor can support highly parallel vision processing structures as 
well as more traditional pipelined or sequential algorithms.  Because the processor hardware can 
be reconfigured, it becomes a flexible prototyping tool.  The resulting platform is well suited for 
research in reactive robot control based on vision, as well as research into biomorphic vision 
structures. 

1 Introduction 

Vision has long been the “holy grail” of senses.  While it provides the most detailed 
information about the environment around an autonomous device, vision has also been 
difficult to implement.  The extreme complexity and density of sensory data that is provided 
by a camera leads directly to difficulties in processing the vast quantities of information. 

These difficulties are exacerbated when we try to incorporate vision in an autonomous mini-
robot.  Vision is power hungry, both computationally as well as physically.  Adding 
acquisition and processing hardware consumes valuable space and energy.  Attempting to 
feed such a high bandwidth data stream directly to the processor of a mini-robot causes its 
own problems. 

In this paper we outline an architecture for supporting real-time autonomous vision in small 
devices.  Our architecture enables vision to be included as a basic sense in autonomous mini-
robots, without placing undue computational expense on the embedded system.  Feature 
extraction and description algorithms can be implemented using both highly parallel and 
traditional sequential structures.  The vision processor uses reconfigurable hardware, which 
provides a flexible common platform for a broad range of applications, as well as allowing 
quick prototyping and incremental development of vision based designs. 

Because vision algorithms are implemented on this processor in hardware and in parallel, the 
processor is capable of full motion frame rates [1].  Coupled with a flexible communications 
protocol where the encoding of the features is entirely user-defined, our architecture can be 
used for applications ranging from vision pre-processing to reactive control performed 
entirely on board the vision processor. 

1.1 Structure of the paper 

In Section 2 we give some background on current vision processing techniques for embedded 
and autonomous systems, including monolithic von Neumann architectures and silicon 



retinas.  The properties of these systems and their limitations are examined.  In Section 3 we 
discuss the architecture and design goals of our vision processor.  The processing model used 
in our architecture is described, and in Section 4 we outline an implementation of the 
architecture in re-configurable hardware.  In Section 5 we discuss applications for our vision 
processor.  In Section 6 the paper concludes with a summary of the advantages of the vision 
processor over traditional architectures. 

2 Vision in autonomous mini-robots 

2.1 Traditional vision technology 

In traditional computer vision systems the analog image stream from the video camera is sent 
over a cable to a frame grabber, and optionally, a digital signal processing (DSP) system 
hosted on a computer.  While this technique yields powerful vision processing systems, it is 
not suited to autonomous mini-robotics.  DSP and frame-grabber hardware is too bulky and 
too power hungry to mount on a mini-robot.   

2.2 On board monolithic vision 

Common embedded systems that incorporate on board vision use a custom camera with the 
image stream directly acquired by the CPU of the device.  This method of acquisition uses the 
CPU interrupt system to read pixel data from the imager.  Full motion vision is a high-
bandwidth sensory stream, and uses a significant portion of the CPU processing bandwidth 
just to acquire the image frames.  Using a single CPU for acquisition, image processing and 
control places limitations on the complexity of both the vision and control algorithms, as they 
have a limited number of processor cycles in which to execute if they are to perform real time 
control.  Often the data stream bandwidth is reduced by lowering the image resolution or the 
rate of the image capture. 

This architecture was used in the Eyebot series robots until the current version [2; 3].  Small 
to medium scale CPUs that are used for embedded systems and mini-robots struggle to  
directly acquire a 30 frames per second (fps) full motion image stream. 

The latest generation Eyebot uses a buffering system, and can acquire image frames from its 
low-resolution imager at full motion rates.  Previous Eyebot versions could only acquire 
images at 7 fps, a limitation imposed by using CPU I/O operations to interface directly with 
the imager. 

Another approach, adopted by K-Team in the K6300 Vision Turret, requires an auxiliary 
processor to perform image acquisition and pre-processing [4].  This technique has the 
advantage of separating the control algorithms and the high bandwidth requirements of image 
acquisition, but still imposes compromises in either image resolution or acquisition frame 
rate. 

These monolithic systems also suffer from limitations in terms of the vision algorithms that 
can be implemented.  Because they rely on von Neumann processors, they are limited to 
sequential processing algorithms or simple pseudo-parallel constructs. 



2.3 Parallel vision processing devices 

Silicon retinas and other pixel-level processing devices have been developed to overcome the 
limitations of von Neumann and DSP vision algorithms, especially in the areas of early vision 
and optical flow [5; 1].  These devices implement parallel processing of pixels with 
processing constructs that resemble biological image sensing structures. 

These devices have two major limitations.  They are usually not programmable [6], or if they 
do allow configuration it is commonly in the form of weight adjustment.  It is generally not 
possible to modify the algorithm that the device implements.  The second limitation, shared 
by imagers in general, is that they do not reduce the bandwidth of the vision stream.  This 
means that although some pre-processing is performed on the vision stream, the acquisition 
bandwidth required of the system CPU is not reduced. 

In other words, these devices perform feature extraction but not data reduction.  For example, 
a custom silicon device might perform edge detection, but still output an array of pixels.  The 
signal-to-noise ratio is increased, but the bandwidth of the overall stream remains constant. 
Figure 1 shows an example of bandwidth reduction through describing the output of an edge 
detection device by identifying the end points of a line. 

Some devices (for example, [7; 8; 9]) output a feature location or other information as an 
analog signal, but these still suffer from the first limitation: their processing algorithms cannot 
be modified.  Fang [10] has developed a device that combines parallel neural constructs with 
an on-chip processor to perform further processing.  This device is an attempt to create a more 
versatile vision system that can perform feature description and control.  However, it is 
limited to neural-style processing at the pixel level. 

Figure 1. Bandwidth reduction through feature description.  The figure on 
the left is the possible output from an edge detection device.  The readout is 
an 13 by 13 matrix.  By describing the line in terms of its end points, the 
amount of data required to represent the line drops from 169 bytes to 4 
bytes. 

3 Architecture 

3.1 Design goals 

The key design goal of our vision processor is to provide data reduction at the point of image 
capture for a physically small autonomous system with little computing power.  This is 
accomplished by a sending a low bandwidth feature stream to the host device, rather than 
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requiring the host to perform full image readout and processing for each frame.  To generate 
low bandwidth features, reconfigurable computing resources are used to compress the feature 
information extracted by highly parallel processing structures.  These extra resources can be 
used to analyse the output of the highly parallel structures and describe the features in a more 
concise way. 

Our design provides ‘cheap’ (computationally inexpensive) vision services to embedded 
systems.  The design is flexible in the sense that it places few limitations on the vision 
processing algorithms that the processor can implement.  It allows the use of any processing 
frame rate up to full motion vision.  Size and power consumption are secondary goals, and 
only constrained to the extent that allows the design to be used in a physically small 
embedded system. 

3.2 System interfaces 

The vision processor interfaces with the host device through two communications busses.  
The control signals used to modify the operation of the vision processor are sent via a separate 
bus to the feature data.  The feature data may be sent from the processor either in a continuous 
stream of feature frames, or on a by-request basis.  Both buses are independently selectable 
for 8-bit parallel or serial communications.  Figure 2 shows the vision processor interfaced to 
a host device. 

Figure 2. The vision processor interfaced to an embedded device.  The 
vision processor handles all acquisition requirements.  The low bandwidth 
feature data is sent to the host device via the feature bus.  The host sends 
commands to the vision processor via the separate control bus. 

The encoding of the feature data is set by the user when designing the feature extraction 
algorithms.  Any type of encoding may therefore be used; from a human-readable ASCII 
format, through a compact binary representation, to a full frame pixel readout, if required. 

3.3 Processing model 

The human visual system has several vision streams connecting the retina to the visual cortex 
[11].  These streams originate in the retina, and have different properties related to the type of 
processing that is performed on them in the visual cortex.  For example, a low resolution low 
latency stream might be used for detecting motion in the visual field, while a high resolution 
stream might be used for detailed analysis of a scene. 

Inspired by this approach, our vision processor splits the incoming image stream into four 
vision streams.  These streams operate with independent resolutions and regions of interest 
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within the incoming image.  The properties of each stream can be controlled by the host 
device via the control interface. 

3.4 Benefits of this architecture 

A more conventional approach to developing vision system prototypes uses workstations to 
process vision signals from a remote camera.  Our vision processor is designed to implement 
parallel processing structures, which present an added simulation overhead when prototyped 
on a von Neumann system.  Evaluating pseudo-parallel structures on a real time full motion 
vision stream is almost impossible on a workstation. 

Our architecture is compact enough to allow algorithm prototyping directly on the target 
embedded platform.  This also allows the embedded system interface to be developed at the 
same time as the vision algorithms.  In addition, the same processing fabric is used for both 
prototyping and implementation of the algorithms.  The architecture itself can be scaled up or 
down to meet the needs of a specific implementation. 

4 Design 

4.1 FPGAs and reconfigurable hardware 

To perform acquisition, control and processing, our design uses field programmable gate 
arrays (FPGAs).  FPGAs consist of a large matrix of relatively low level digital logic 
elements, such as latches and look-up tables.  These elements can be configured and 
connected in a programmable way to provide fully customisable hardware.  FPGAs can be 
programmed via logic circuit schematics or through a hardware description language (HDL).  
FPGAs are capable of implementing traditional von Neumann processing architectures, or 
alternatively of implementing highly parallel processing structures.  Because the low level 
computing elements work asynchronously, parallelised algorithms and structures can be 
evaluated much faster than on a typical fetch-and-execute architecture.  They are re-
programmable, and can be configured without being removed from the circuit board. 

In our design, FPGAs are used to control the vision input device (including exposure and 
frame acquisition) without requiring separate frame-grabber hardware.  FPGAs are also used 
for filtering and processing the acquired image, as well as handling communication with the 
host device. 

Our design uses the Spartan-IIE family of devices from Xilinx [12]. 

4.2 Task partitioning 

The functionality of the vision processor is spread over two FPGAs.  Acquisition and control 
are performed independently of feature extraction and vision processing.  The two FPGAs 
communicate through a high bandwidth double buffering system, implemented by dual-port 
RAMs.  The use of dual-port RAMs allows the acquisition system to generate vision streams 
at full motion rates, while allowing the feature extraction system to process each vision 
stream at any frame rate. 

Figure 3 shows an overview of the systems implemented in the two FPGAs. 



Figure 3. The functionality of the vision processor is spread between two 
FPGAs.  The communications and control FPGA performs acquisition and 
vision stream splitting, and handles communications with the host device.  
The feature extraction FPGA is entirely configured by the user.  The 
buffering system allows each vision stream to operate independently at full 
motion frame rates. 

4.3 Communications and acquisition 

Both communication with the host device and the acquisition of the image stream are 
managed by one of the FPGAs, shown in Figure 4.  Within the FPGA, control of this 
functionality is implemented in a set of concurrent firmware modules. 

Figure 4.  An overview of the control and acquisition systems for the vision 
processor.  These systems are implemented in a single FPGA. 

The stream splitter is responsible for dividing the incoming image frames into four separate 
streams.  Each stream can have an independent spatial sub-sampling rate and region of 
interest within the source image.  The vision streams are sent through the buffering system to 
the feature extraction FPGA by separate SRAM controllers.  This ensures that the bandwidth 
of each stream is sufficiently high, and independent of the bandwidth of the other streams. 
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Feature data is received from the feature extraction FPGA over four separate feature busses, 
one for each vision stream.  The frame rate of each feature steam is dependent on the 
processing time required by the feature extraction logic for that stream.  The feature streams 
may run at any frame rate, and may have frame rates that differ from one another. 

Depending on the configuration the host device requires, features corresponding to each 
stream can be sent to the host on various schedules.  The data for each feature can be sent as 
soon as an updated feature frame is received, in a streaming approach.  The host will receive 
feature information at the highest frame rate the feature extraction logic is able to achieve.  
The bandwidth of the feature port is such that full image frames can be delivered in real time, 
if necessary.  However, we expect that encoded feature data will be considerably smaller than 
full image frames. 

Feature data can also be sent to the host on a “by-request” basis.  Under this scheme, the host 
device sends a request for a specific feature over the control port.  The feature port then 
returns the latest feature frame available for the requested feature.  This is a lower bandwidth 
solution for the host device, as feature data is only sent when the host is ready to process it. 

Control of the imager, the properties of the vision streams and the way in which features are 
sent to the host can all be managed by the host device via the control port. 

4.4 Feature extraction 

The feature extraction and description component of the vision processor is implemented in 
the second FPGA.  The interfaces to the vision stream buffering system and the feature stream 
busses are fixed, however the majority of the hardware resources in this FPGA are available 
for the user to configure.  The feature extraction FPGA is shown in Figure 5. 

Figure 5. The feature extraction FPGA.  The grey area represents the user 
configurable resources. 

The designer of the feature extraction algorithms is presented with a standard SRAM interface 
to each double-buffered vision stream, as well as signals to  indicate when a new stream 
frame is available.  The feature extraction algorithms must interface with the feature data 
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buffers in a predefined way, to indicate to the control and communications system when 
feature extraction from a stream frame has been completed. 

Aside from these predefined components, the designer is free to commit any amount of 
processing resources to any vision stream.  Development for FPGAs is generally performed in 
hardware description languages (HDLs) such as VHDL or Verilog.  HDLs provide a platform 
for modular development of asynchronous digital structures.  HDLs also allow high level 
constructs to be developed based on lower level structures.  Although most development for 
this processor would be performed in an HDL-type language, any source format supported by 
the Xilinx development tools can be used.  This includes schematic entry, state machine 
design and the C language, as well as support for embedded processor cores.  For more 
information, see [13]. 

4.5 Bus speeds and vision bandwidth 

The image sensing device we use in this design is a Kodak KAC-0311 CMOS image sensor 
[14].  This device is capable of transmitting a full motion 640×480 pixel 10 bit monochrome 
30 fps image stream with a 14 MHz pixel clock.  A 640×480 pixel 8 bit monochrome full 
motion image stream, as used in our design, requires a bus bandwidth of 7.5 Mbyte/sec. 

The buffering system performs synchronous readout at 40 MHz, with an independent 8 bit 
data bus for each vision stream.  This provides a per-stream bandwidth of 40 Mbyte/sec.  
Each vision stream can occupy up to 2 Mbit per frame, giving an approximate maximum per-
stream resolution of 640×410 pixels. 

For a 30 fps image stream the frame time is 1/30 of a second, or approximately 33 msec.  At 
40 MHz, the image stream buffering system requires 6.6 msec to read a 2 Mbit frame, leaving 
26 msec to process the frame and extract the features to meet the full motion deadline. 

The feature extraction logic implemented in the FPGA can operate asynchronously, with 
internal configurable logic block (CLB) switching times in excess of 300 MHz [15].  In 26 
msec, over 7.8 million layers of parallel processing structure could be evaluated.  FPGAs do 
not yet contain anywhere near this amount of available logic, but this figure gives an 
indication of the size of the parallel structures that can perform feature extraction on a full 
motion vision stream. 

The system clock distributed to the feature extraction FPGA runs at 80 MHz, therefore any 
synchronous feature extraction logic will run at this speed.  The 26 msec full motion deadline 
leaves over 20,000 system clock cycles in which to process each frame. 

4.6 Progress 

The design of the vision processor hardware is complete.  The processor consists of two 
stacked PCBs and a satellite digital camera module, connected by an IDC standard ribbon 
cable.  The processor is approximately 120×100×30 mm in size, and the camera module is 
approximately 70×45×15  mm, with interchangeable lenses.  The connections to the host 
device are via standard high density “D” connectors when operated in parallel mode, and 
miniature connectors when in serial mode.  The PCB layouts for the vision processor are 
shown in Figure 6. 



The system is configured using the Xilinx in-system programming software designed for their 
line of FPGAs.  The software component of the system which will manage communication 
and support user designed vision algorithms is currently being designed. 

Figure 6 PCB layouts for the vision processor and the satellite camera 
module. 

5 Applications 

The re-configurability of our configurable vision processor makes it ideal for prototyping real 
time vision algorithms.  Because the system is able to implement highly parallel structures, 
low-level and early vision algorithms can be tested and modified very rapidly.  The platform 
is ideal for research in reactive robot control based on vision, as well as research into 
biomorphic vision structures. 

The fabric of FPGAs is suited to structures and algorithms based on low-level digital 
hardware.  This differs from traditional sequential or pipelined architectures, and limits the 
use of convolution-type operations.  Analog structures such as those designed for silicon 
retinas also cannot be implemented in an FPGA.  Designing vision processing for our 
architecture may require a re-thinking of these algorithms. 

The vision processor we have described is designed to be interfaced to common computing 
hardware.  However, because the feature output encoding is extremely flexible, the processor 
could be used to perform reactive control without external processing hardware.  There is no 
limitation on the processing that can be performed within the feature extraction FPGA.  
Control algorithms could be included in the HDL design, coupled to the vision processing 
structures.  The feature bus could then transmit encoded control information rather than image 
features.  Combined with simple decoding and actuator driving hardware, the vision processor 
could be used alone for reactive control. 

6 Summary 

In this paper we have described our design for an embedded vision processor.  This processor 
supports real time autonomous vision in small devices such as mini-robots. 
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Our design provides several advantages over traditional vision systems designed for 
autonomous mini-robots.  Because image acquisition is performed by our processor, the CPU 
of the autonomous system is not loaded by a high bandwidth data stream.  This leaves more 
CPU cycles free for control and higher level image understanding algorithms.  Additionally, 
because our processor is not limited by the IO bandwidth and interrupt driven processing of 
modern CPUs, full motion vision can be incorporated into an autonomous system.  FPGAs 
provide our design with the ability to implement sophisticated vision processing based on 
highly parallel structures, as well as allowing more traditional sequential algorithms to be 
used.  The re-configurability of our processor means that these structures can be rapidly 
prototyped and tested on a real time vision platform. 
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