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The eigenvalue spectrum of the matrix of directed weights defining a neural network model is informative

of several stability and dynamical properties of network activity. Existing results for eigenspectra of sparse
asymmetric random matrices neglect spatial or other constraints in determining entries in these matrices,
and so are of partial applicability to cortical-like architectures. Here we examine a parameterized class of
networks that are defined by sparse connectivity, with connection weighting modulated by physical proximity

(i.e., asymmetric Euclidean random matrices), modular network partitioning, and functional specificity within
the excitatory population. We present a set of analytical constraints that apply to the eigenvalue spectra of
associated weight matrices, highlighting the relationship between connectivity rules and classes of network

dynamics.
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I. INTRODUCTION

The distribution and magnitude of the eigenvalues of ran-
dom matrices arise in the analysis of many physical systems,
and are of particular interest in theoretical neuroscience. The
eigenspectrum of the weighted coupling matrix W of a neural
network provides valuable information concerning the stability
and behavior of a simulated model [1-6]: for example, the
magnitude of the eigenvalue with the largest real part places
limits on the linear stability of a network or of network
partitions [1,3,5,7]; the existence and magnitude of complex
eigenvalues determine whether oscillatory network dynamics
are expressed [4,8—10]. Numerically computing eigenvalues
for small networks is trivial, but analytical eigenvalue solutions
for matrices corresponding to even small nonsymmetric
networks with relatively simple structure rapidly become
intractable [10].

Weight matrices for large networks are often generated
randomly, and so theorems concerning the eigenvalue spectra
of random nonnegative matrices [11,12] and random matrices
with positive-only and negative-only columns apply [2,13,14].
However, connections in physical systems such as the mam-
malian neocortex are not made randomly [15-22] and include
spatial constraints, and so these theorems are insufficient for
models with more cortically realistic architecture. Here we
propose two alternative rule-based methods for generating
matrices corresponding to systems with parameterized non-
random interactions, and determine bounds on the eigenvalue
spectra of these matrices.

We begin by designing a family of sparse asymmetric matri-
ces which include community structure, as well as constraints
inherited from Euclidean random matrices. These matrices
describe connectivity within directed, weighted networks.
We first derive bounds on the maximum real eigenvalues
for matrices with stochastic community structure. We follow
by deriving bounds on the maximum real eigenvalues for
sparse asymmetric Euclidean random matrices, which describe
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networks with smooth spatial connectivity constraints. Finally
we discuss the implications of our results for neocortex.

II. NETWORK ARCHITECTURE

Many networks describing biological phenomena incorpo-
rate weighted, signed interactions between nodes, for example,
gene regulatory networks [23], activator-inhibitor systems
[24], or biological neural networks [25]. Here we model
such systems by imposing a blocked sign structure on a
matrix defining the strength of pairwise interaction between
nodes. A network of N nodes consists of a number f;N of
inhibitory nodes and (1 — f;)N excitatory nodes, where f;
is the proportion of inhibitory nodes in the network (0 <
f1 < 1). Excitatory nodes form strictly positive connections,
and inhibitory nodes form strictly negative connections. The
resulting connection weight matrix W is partitioned as

WeE —WE1i|

1
Wie —Wi M)

W=[Br B/]= [
where all entries w;; in Wegg, Wgy, Wig,and Wy are > 0. Wgg
has (1 — f;)N x (1 — f;)N elements; W;g has fiN x (1 —
fr)N elements; Wg; has (1 — f;)N x fi N elements; W;; has
fiN x fiN elements; and Bg and By, respectively, denote the
excitatory and inhibitory blocks of W.

A. Stochastic community structure

Many man-made and biological networks contain clus-
tering of connections, such that “communities” of nodes
which are more tightly coupled emerge [26]. In mammalian
neocortex, for example, connections between neurons in the
cortex are not made randomly, even ignoring any dependence
on physical location. Excitatory neurons in the rodent cortex
form subnetworks within which connections are made more
densely [20,21,27]. We include this constraint by defining
a number of subnetwork blocks, M, that equally partition
the excitatory population. Each excitatory node i is assigned
to a subnetwork with ID v; : (1..M), with each subnetwork
containing (1 — f;)N/M excitatory nodes. We define the
elements of the subnetwork block membership matrix as
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Gm:ji € Om, Where

if v; = v; =m and i, j are excitatory

1
Gm:ji = {0 otherwise

The matrix Q,, is thereforea N x N boolean matrix indicating
possible excitatory to excitatory connections within a single
subnetwork m. We also define the matrix Q = (Uy Q,,)M/N,
where Uy, Q,, is the elementwise boolean OR of all matrices
Q.. The submatrix Qgg then refers to the portion of
Q describing block membership within the population of
excitatory nodes.

Connections within and between subnetworks are governed
by a global parameter r, which defines the proportion of total
connections weight for each excitatory node that is restricted
to be made within each subnetwork (with 0 < r < 1).

B. Spatial and functional connectivity constraints

Pairwise interactions in physical networks can depend on
distance, such that the strength or probability of interaction
is related to physical distance via a function over Euclidean
space. Random matrices that incorporate this constraint are
known as Euclidean random matrices [28], and have been
used to model physical phenomena such as diffusion [29]
and wave propagation [30]. Neurons in the neocortex reside
in physical space, with connection probabilities modulated
smoothly across the cortical surface [31-33]. In addition,
connections within the cortex are modulated by functional
similarity over one or more physiological metrics. For ex-
ample, in the primary visual cortex of many mammals the
response of a neuron to a set of drifting grating stimuli can
be highly tuned to the orientation or direction of grating
drift [34]. In many mammalian species, neurons (or small
regions of the cortex) that have similar functional metrics are
more likely to be connected (mouse, [21]; cat, [15,22]; tree
shrew, [19]; monkey, [17,18,22]; human, [16]). For simplicity,
we consider that these functional dimensions are treated
similarly to spatial dimensions, so that a node is assigned a
“location” in a high-dimensional space that defines its spatial
and functional properties. As an alternative form of nonrandom
connectivity in addition to the stochastic community structure
described above, we consider systems where connectivity
is smoothly modulated according to spatial and functional
constraints.

Each node i is randomly assigned a location vector X;
sampled uniformly from the unit hypercube with dimen-
sionality D, such that x; = {x;1,X;2,...,X;p} and x;; ~
Uniform(0,1). The matrix s;; € S, which contains connection
weights defined by spatial and functional relationships, is a
Euclidean random matrix with s;; = % (x;,X;), where % (-)

J

=

Weg =wg(r - Qg + (1 — ”)SEE)hE1

Wig =wg-Sig-hy'
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is a function defining the connection weight according to
a similarity metric relating the location of nodes i and
J [28].

In this work we consider a smooth connectivity relationship
in a multidimensional space, under the assumption that the
space in which the network resides is a hypertorus, such
that the opposite planes along each axis are contingent. As a
connectivity relationship we adopt a D-dimensional Gaussian,
such that

5. 102
F(x%.X;) = D% — X;[°) = exp ( - M) ?)

D22

where ||x; — x j||02 is the squared two-norm distance over a
unit hypertorus, given by

Ix; — xj||02 = Z (arccos{cos[2m (x; 4 — xj_d)]}/2n)2.

d=1..D

3)
The connectivity function in Eq. (2) is under the control of
a parameter «, which determines the range of connectivity
within the network (x > 0). As « increases, so does the spatial
and functional range over which connections are distributed.
The matrix S is normalized such that it approximates a discrete
probability density function (PDF) of the connections to each
node, i.e., E[ZXS] = N.

C. Sparse connectivity

Connectivity in many networks is extremely sparse,
whereby a node is connected to only a few of its potential
partners. We include this constraint by defining fill factors A g
and &7, which determine the proportion of nonzero connections
in Bg and By, respectively (0 < hg < 1;0 < hy < 1) [2]. For
a given network, a sparse boolean matrix C defines which con-
nections are randomly selected to exist, where cj; € C defines
the presence or absence of a connection from node i to node j.
In practice, we define the matrix C by randomly distributing
the appropriate number of zero values in each column of the
submatrices Cgg, Cgy, Crg,and C;;. For small x and small N,
self-connections have a large impact on the eigenvalues and
network stability. The influence of diagonal elements of W
decreases as k — oo and as N — oo. In the limitas N — oo,
elements of C can be assumed to be independent, and therefore
approximated by a Bernoulli distribution.

D. Composed network connection matrix

We define the family of random matrices examined in this
work as

—Wgr = —w; - Sgr 'h111| 4)

Wi =—w;- S -hy!

where A ® B denotes elementwise multiplication between matrices. The expected sum of each column of B is equal to wg

(and each column of By is equal to —wy).
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III. EIGENVALUE SPECTRA OF SPARSE MATRICES
WITH STOCHASTIC COMMUNITY STRUCTURE

We first examine the distribution of eigenvalues under the
simple stochastic partitioning of networks given by r > 0,
and ignoring spatial constraints (i.e., k — oo and Vi,j :
[sji € S, 85 = %D

The weight matrix W has a trivial eigenvalue A, = wg(1 —
f1) — wy fi, determined by the global balance between ex-
citation and inhibition in the network [2,10] and which
corresponds to the growth rate of a uniform perturbation of
network activity [6] [Fig. 1(a)]. This eigenvalue is robust to
changes in network size, subnetwork structure, and sparsity.
For a full matrix without subnetwork structure (i.e.,hg = h; =
1, r = 0), all other eigenvalues are zero.

Including modular structure of the kind described above
introduces a number of nonzero, positive eigenvalues related
to the number of subnetworks M and the strength r of
within-subnetwork connectivity. Wg g can be transformed to a
block matrix by grouping excitatory neurons within the same
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FIG. 1. Empirical and analytical eigenvalue distributions are
closely matched. (a) Analytical predictions of A, (curve) match
empirical observations (dots) in a sparse network without community
structure with N = 500, hg = 10%, h; = 50%, w; = —1, and f; =
20%. (b) Analytical predictions of A, (curve) match empirical
observations (dots) in a full network (i.e., hg,h; = 100%) with
N =500, wg =1, w; = —10, f; = 20%, and with two subnetwork
partitions (M = 2). (c¢) The distribution of empirical eigenvalues
(black circles) matches the analytical bounds (gray circles and
markers) in a sparse network (N = 1000, hg = 10%, and h; =
50%) with many subnetwork partitions (M = 20) and with wg = 2,
w; = —12, f; = 20%. (d) Analytical predictions of the maximum
real eigenvalue max Re(A) (curves) correspond well to the empirical
maximum real eigenvalue, in a sparse network (N = 5000, hp =
10%, h; = {10%, 20%, 80%}) containing two subnetwork partitions
(M = 2) and with wg = 2, w; = —12, f; = 20%, and hy = 10%.
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subnetwork, so that

Wesy  Whys Whs

Wys  Wssn Wys
Wee = : - : ’

Wys  Wys Wssn

with columns of Wygy summing to X Wssy = we(l — fi)r +
wg(1 — f))(1 —r)M~" and columns of off-diagonal blocks
Wys summing to ZWys = we(l — f;)(1 —r)M~!. For a
nonsparse network, the block structure of Wgg therefore
introduces M — 1 eigenvalues located at Ap = X Wgey —
Y Wys = wg(l — fy)r that persist as eigenvalues of W
[Fig. 1(b)] [35].

As connectivity in the network becomes more sparse
(i.e., hg,h; < 1) and as N — oo then the nontrivial and
nonsubnetwork eigenvalues become densely clustered within
a circle centered at the origin, bounded in expectation by an
outer radius related to the variances of the elements of Bg
and B; and given by {N[(1 — f))o% + fi02]}2 [Fig. 1(c)] [2].
The subnetwork-related eigenvalues A ; become distributed
within a circle of radius o centered at Ay, where oq is the
standard deviation of the subnetwork-only connections within
WEgE, i.e., for which v; = v; [Fig. 1(c)].

The elements of Br have a known discrete distribution,
determined by wg, r, hg, f;, and M. Elements of Bg
can adopt only three values: zero with probability (1 —
hg); within-subnetwork weights wy,—,, = wgrM/hgN +
(1 —=r)wg/hgN with probability py—,, =he(l — f1)/M;
excitatory weights with nonsubnetwork partners wy,.,, =
(1 —wg/hegN with probability py,x,, = he(l — f1)(1 —
1/M); and excitatory to inhibitory weights wg; = wg/hgN
with probability pg; = fihg.

We therefore derive the following analytical expressions
for the variance measures of the matrix W. The mean of Bg
is given by pw, = wg/N; the mean of within-subnetwork
weights (elements of Wgg for which v; =v;) is given
by py=y; = wgrM/N + (1 — r)wg/N. The variance 0(22 of
within-subnetwork connections is therefore given by

2
0 = he(Wy=y, = Ho=y) + A =hp)y . ()
Similarly, the variance o7 of By is given by
2
62‘ = (1 - hE)M%VE + pv,»:w (wU,‘=Uj - MWE)
2
+ Puoytv; (Woyt; — 1w;)” + PEr(WEL — fw,)* (6)
and the variance 012 of By is given by
of = (= hp(wi/N) +hy(wi/hiN —w /NP (D)
We therefore obtain closed-form bounds on the eigenvalue
spectra for matrices describing sparse networks with stochastic

community structure, as N — oo. The maximum eigenvalue
[see Fig. 1(d)] is expected to be smaller than

=

max()»b,AQ +UQ,{N[(1_f1)U§+f1012]} ) ®)
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IV. EIGENVALUES OF MATRICES DESCRIBING
NETWORKS WITH SPATIAL CONNECTIVITY
CONSTRAINTS

We now examine the eigenvalues of matrices describing
networks that include a connection constraint over spatial
proximity or functional similarity, with » = 0.

In the degenerate limit where x — 0 (and assuming & = 1),
each node in the network connects only to itself. This results
in a diagonal matrix W with all-zero off-diagonal entries,
(1 — f;)N diagonal entries equal to wg and f;N diagonal
entries equal to w;. As a consequence all eigenvalues of W are
real, with (1 — f;)N eigenvalues at wg and f; N eigenvalues
at —wy. In the other limit, as k — 00, connection weighting
according to spatial and functional similarity becomes uniform
and the solutions derived for nonspatial networks in the
previous section apply.

For finite N and 0 < k < 0o, the connection profile
imposed by Eq. (2) serves to strongly couple each node
to a group of nearby nodes, with the size of the group
decreasing as k — 0. We estimate the eigenvalue distribution
produced by the influence of this spatial restriction by
approximating a portion of W for a small strongly coupled
partition by a pair of excitatory and inhibitory neurons [4],

with
p Weel? —Wegl” Wee  —Wei
w|" = . R G
Wikl Wi Wie —Wi
where W, denotes estimates for the means of the corresponding
submatrices in W|”. The eigenvalues of W|” have the form
N N N A N gl
s = Wee — Wi & [(Wee + Wii)? — 4]

We obtain closed-form estimates for the distribution of
{A4, A_} over instances of W by examining the most extreme
values of ... We denote the maximum estimate of a parameter
by [-], and the minimum estimate as [-]. We estimate the
eigenspectrum bounds as

20041 = [ee] =i ] (e 1+ i 1)? — 4Tz ] Liber )17
200] = Lbee] = [1i1—[(Lhee ] + [1i1)2—4Lie ) [er 117
(10)

To obtain estimates for 0., we derive the distribution of sums
of elements of S. The mean and variance of elements s € S

are given by
Eist = [[ 0x— 01 yx
D

= DPa P2 Perf(1/2Dk)P, (1)

ol = f/ G2(|Ix — 0]°)dx — E*[s]
D
= DP(r/2)PkPerf(1/v/2Dk)? — E?[s], (12)

where E[-] is the expectation operator. By transforming the
distributions of variates used to compose S, we observe that
the sum of L elements in S (defined as ¥;S) is distributed
as XS ~ Gamma(ap, 0p), with ap = LE*[s]/o? and 6p =
o2/{E?[sI(N — 1) + E[s]} (see Appendix A). The extremal
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FIG. 2. (a) Analytical distributions of X;S;.;, [X.S;+;], and
[X.Siz;j] (curves) closely match empirical measurements over
2000 network instances (shaded histograms). Network parameters:
N =1200, L = 1199, «, = é, D =5. (b) Analytical predictions
of eigenspectra bounds E[A,] and E|[A_] (curves) and empirical
maximum and minimum eigenvalues (dots) for networks with
r=0, hj,hg =1, f; =20%, N =6000, D=2, wg =2, and
wy = 8.

values of sums X;S for i # j [see Fig. 2(a)] are then
distributed according to

FG (OlD,O, %)L_l

exp <_—x>Lx_l+aD95an,
[(ap) Op

FR(OlD,HL)L_l —Xx | N
%) e (—)Lx angen (13
[(ap) Op

where the notation ¢ <~ P(x) indicates that ¢ is distributed pro-
portional to function P(x), with a suitable normalization factor
such that P(x) forms a valid probability density function. In
Eq. (13), I'(z) is the Euler gamma function, I'g(a, 20, 21) =
['r(a, zo) — g(a, z1) is the generalized regularized incom-
plete gamma function, ['z(a, z) = ['(a)™! fzoo t~Vexp(—t)dt
is the regularized upper incomplete gamma function, and «p
and 6p are the shape and scale parameters of the gamma
distribution, given above.

The partition estimates for the case when r =0 (i.e.,
only spatial constraints are considered) are described
by Wee “we(sii + Xa—pyn-18), Wit Cwi(sii + Tpn-19),
li),‘w ~ wE(EleS), and Ii)ei ~ w,(E(l_f,)NS), where ELS is
the sum of L elements s;; € S for i # j, and s;; = Si—; =
{E[s](N — 1) + 1}~!. The extremal value expectations E[,]
and E|,| are used to estimate the bounds in Eq. (10) [an
example is shown in Fig. 2(b)].

When sparse connections are included (i.e., hg, h; < 1),
the maximum eigenvalue of W for large N is estimated by

[XpSizi] ~

[XrSizi] ~

[N

max (A, {N[(1 = f)op + fio7]}?, TAs]). (14)

V. DISCUSSION

The eigenvalue spectrum bounds we derived for asymmet-
ric matrices apply equally to symmetric Euclidean random
matrices defined by a Gaussian function on a torus, as can
be obtained by letting f; = 0. In this case, the maximum real
eigenvalue is estimated by [A,] = E[w,,. |, and an analytical
probability distribution for A is given in Eq. (13). Closed
bounds can be obtained for these eigenvalues, as opposed
to the bounds in expectation derived here, if connection
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functions with bounded domains are used for .Z(-) in
Eq. (2).

Results describing eigenvalue distributions for unweighted,
unsigned, and undirected random graphs with hierarchical
community structure will apply to the portion of Q that
corresponds to the excitatory portion of W [35-38]. These
results suggest that methods for spectral identification of
modular structure might be applicable to biological networks,
if dense and relatively complete connectivity matrices can
be obtained experimentally [35,39—-41]. Although our results
apply instead to the signed and weighted connectivity matrix
W, we found that the blocking structure is nevertheless
reflected in the closed-form expression for the bounds on
eigenvalues Ag.

We examined a partitioning of W where subnetworks were
of equal size, a reasonable assumption for cortical networks
with large N. If the size of each subnetwork is allowed to
vary, then the magnitude of the associated eigenvalues will
change with group size [35]. However, the precise value of
each eigenvalue will then depend crucially on how the total
weight within each subnetwork is normalized.

Implications for dynamics and computation in neural networks
and in the cortex

Here we briefly discuss the implications of our eigenspec-
tra results for the behavior of neural networks, where the
matrix W defines the connection weights within a sparsely
connected network, and where the transfer function of each
node is approximated by a linear or threshold-linear func-
tion. Our results are suggestive of stability and operating
regimes also for networks with nonlinear transfer functions,
but the shape of the neuron gain function can introduce
further complexity into the operating modes of a network
[42,43].

For all networks regardless of nonrandom structure, the
eigenvalue A, determined by the global balance between
excitation and inhibition limits the global stability of a neural
network under the constraint A, < 1 [2,6,10].

In networks with modular (or “community” or “planted
partition”) structure, the subnetwork eigenvalues Ao 4 (for k =
1..M — 1) correspond to eigenvectors that express competition
between subnetwork partitions of the excitatory network. The
presence of these eigenvectors implies that if a subnetwork
partition is active it will tend to decrease the activity of the
other excitatory subnetworks. If these eigenvalues correspond
to unstable modes (i.e., 1o > 1) then the competition eigen-
vectors are unstable and the corresponding nonlinear network
will be characterized by hard competitive interactions between
subnetworks [10,44]. However, this need not lead to overall
network instability. Due to the threshold nonlinearity present in
most neural simulations, the unstable competitive modes of the
network will silence one or more of the “losing” subnetwork
partitions, modifying the stability structure of the network
[1]. Under the symmetric and balanced modular architecture
discussed here, eventually only a single excitatory subnetwork
partition will remain active. The matrix W can then be reduced
to a two-element equivalent to a single partition, similar to
the treatment used in Eq. (9), with W|P = [“ssy i/,

wefr  —wifr

where wggy = wg(1 — f1)(r +[1 — r]M~"). This network
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partition is stable under the conditions wgsy < 2+ w; f;
and wg f; < (wssy + wy f1)*@w; f;)~!. Competition will
therefore silence all but one subnetwork through the action of
disynaptic inhibition; this form of network dynamics is proba-
bly undesirable in the cortex. Our results indicate that in the ab-
sence of an inhibitory contribution to subnetwork membership
the subnetwork eigenvalues Ay are not dependent on global
inhibitory feedback. Due to the structure of A, increasing the
strength of inhibition cannot therefore balance the effect of
introducing modular connectivity to a network. This surprising
result suggests that hard limits exist on the degree of sub-
network specificity allowable for synaptic connections in the
cortex.

Previous results have derived Eigenvalue spectra for Hermi-
tian and non-Hermitian Euclidean random matrices by forming
analytical decompositions of the spatial operator resolvent
[30,45], but have not analyzed matrices with block-signed
structure similar to those we discuss here. Our results for
networks with smooth spatial and functional connectivity
indicate that in Euclidean random matrices including a signed
bipartition of positive and negative elements the bound of
the eigenspectrum becomes increasingly sensitive to the local
balance between positive and negative interactions as the
spatial range of interactions decreases. Interpreted for cortical
architecture, our result implies that as connections become
more functionally and spatially constrained networks become
increasingly sensitive to the local balance between excitation
and inhibition, in the form of excitatory recurrence (,.) and
excitatory or inhibitory recurrent connections w;, and W,;.
This is because feedback within the network is restricted
to ever-smaller subpopulations, and random deviations away
from expected values of connectivity cannot be effectively
averaged away. These issues decrease in severity for large
N, but are exacerbated in extremely sparse networks such
as the mammalian neocortex (i.e., hg, h; — 0). Our results
highlight the importance of excitatory and inhibitory balance,
not only globally but also at the mesoscale of local network
statistics. Since our connectivity constraints can be treated
as functional similarity constraints over some physiological
measure, we expect that homeostatic plasticity mechanisms
in the cortex must be sensitive to balance within functional
cohorts.

ACKNOWLEDGMENTS

We thank L. Cossell, A. Landsman, M. Pfeiffer, M. Penny,
M. Okun, and P. Latham for helpful discussions. This work
was supported by the University of Basel Young Researchers
fund.

APPENDIX A: ANALYTICAL PROBABILITY
DISTRIBUTIONS FOR UNIFORM RANDOM LOCATIONS
AND GAUSSIAN FUNCTIONS OF DISTANCE ON A
D-DIMENSIONAL TORUS

1. Distribution of squared distances between
uniform random variates

The Euclidean distance measures on a torus used to generate
the weight distributions in the body of the paper are examined
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TABLE 1. Parameter estimates for truncated Rice distribution
Rice(op,vp) approximations to A2%. The support of A% is 0 < x <
D

1

D Op Vp

4 0.171369 0.273127
5 0.181867 0.367747
6 0.194213 0.455956
7 0.206722 0.541939
8 0.218954 0.626903
9 0.230778 0.711325
10 0.242168 0.795430

to determine their analytical distributions. These distributions
have a complex form depending on the dimensionality of
the space, and there is no general solution. Here we include
analytical forms for D = 1..4 and analytical approximations
for D > 4.

We begin by examining the distribution of city-
block distances along single dimensions, given by & =
acos{cos[2m(n; — ny)]}/2m, where the variates n; and n;
are the uniformly distributed locations of two points along
a single dimension—i.e., n,ny ~ Uniform(0, 1)—and acos(-)
is the arc cosine function. We note that, due to the torus
relationship, distances along single dimensions maintain a
uniform distribution, with § ~ Uniform(0, %).

In a D-dimensional space, the distribution of the sum of
D squared variates A7, = Zi , 82 is important for examining
the Gaussian function over a torus [Eq. (2)]. Each variate
8; describes the city-block distance along a single dimen-
sion, and is uniformly distributed as described above. For
D=1, A%&x%, with support 0 < x < 1, mean 5, and
variance ﬁ. The notation x <~ P indicates that x is dis-
tributed proportional to PDF P, with a suitable normalization
factor.

For D = 2 we obtain the exact distribution for A%, given
by

) T 0<x< %
A _1
2 acsc[24/x] — 2acsc[2(4 — }C) 2] % <x < %
(A1)
with support 0 < x < %, mean %, and variance %, where

acsc(z) is the arc cosecant function of the complex
variable z.

For D = 3 we obtain the exact distribution for A%, given
by

2m\/x 0<x< 3
7(3 —4/x) }T <x < %
A3R L7+ 8 /x[—acot(2v/2/x(2x — 1))
+acoty/T+ 1/2x — 1)] % <x < %
+4acsca/4x — 1 — 8atan/4x — 2
(A2)
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FIG. 3. Analytical and approximate distributions of A%. (a—c)
Analytical distributions (black) compared against empirical dis-
tributions for 5000 variates (shaded histograms). These distribu-
tions are exact; note the perfect overlap between empirical and
analytical distributions. (d—f) A Rice distribution (black) gives a
close approximation to the empirical distribution of A2 (shaded
histograms) for D = 4-10. Values of D are as indicated on the
figure.

with support 0 < x < 2, mean 1

I 7> and variance 61—0, where
atan(x) is the arc tangent function and acot(z) is the arc
cotangent function of the complex variable z.

For D > 3, A% can be closely approximated by a Rice
distribution [46]. An analytical solution for the parameters o
and v of a Rice distribution for a given mean and variance is not
available, but iterative estimation of these parameters is possi-
ble [47]. In Table I we provide numerically derived parameter
estimates for Rice distribution approximations for D = 4-10.
Figure 3 shows a comparison between empirical distributions
of A2 and the analytical approximations described here.

In the general case the support of A%, isgivenby 0 < x <
2 the mean is given by E[A%] = £, and the variance is given

2. For D > 10, A% can be closely approximated

2 _
by o = 1g5-

. . . . 2 ~ 2 A
by a normal distribution with A}, ~ Normal({5,,/ 155)-

2. Gaussian function over uniformly distributed
locations on a torus

We now examine the distribution of the Gaussian
function used in the body of the paper [Eq. (2)] such
that gp = Y(A%) = exp(—A2 /k?). We obtain closed-form
solutions by transforming the probability distributions
for AZD given above. Generally, gp ~ Pla <y <b)=
Gy [y PDF 52 [4-'(y)]4, where PDF,:[x] is the
probability density function for A% and ¥~!(y) is the inverse
of 9(x), givenby ¥~ '(y) = —k2D*\/—1Iny.

For D = 1 we obtain the simple form g; ~ (x4/—In x)7!
with supports, 1,1 < x < 1, wheres, p; = exp[—l/(4D2K2)].
The distribution for g; can be closely approximated by a Beta
distribution with g; ~ Beta(1/5,1/2) with the same support
as given above.
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For D = 2 we obtain the exact distribution for g,, given by

8k 2x~'[acot ¢, (x) — atan ¢, (x)]

o~ ~
4rricix!

PHYSICAL REVIEW E 91, 042808 (2015)

S22 <X < SK,2,1

with support s, 2, < x < 1 and where ¢, (x) = k+/—k =2 — 161n x.

For D = 3 we obtain the exact distribution for g3, given by

92x~1(r + 4acsev/—1 — 36k21Inx
—8atany/—2 — 36«2 Inx + (24x+/—Inx)

. xf{acoty/T + 1/(—1 — 18«2 Inx)

837~

27mk%x (1 — 4k A/—Inx)
S4mi3x~'/=Inx

By using the Rice distribution approximation to A2, an
approximation to gp for D = 4-10 is given by
. D**Inx o} + D**In’ x
gp~———exp| - ——5——

2
xvp 2vy,

< D*c%opInx )
X IO —2 9
1))

(AS5)

where op and vp are the approximation parameters from
Table I above and Iy(-) is the zeroth-order modified Bessel
function.

Taking the normal distribution approximation to A%, for
D > 10, gp becomes log-normally distributed with

gp ~ Log normal[—(12 DKZ)_I, (6\/§D%K2)_1]. (A6)

In the general case, the support of the distribution of gp
is given by s, p.p < x < 1. For arbitrary D, the mean and
variance of gp can be obtained by integrating ¢4(-) [Eq. (2)]
and are given by

Elgpl = // G(Ix — 0]°)dx = DPx = kPerf(1/2Dx)?,
D

g, = // Z%(Ix — 0]1°)dx — E*[gp]
D

= DP(/2)PkPerf(1/v/2Dk)? — E*[gp]. (A7)

3. Extreme value distributions for column sums of By and B,

To obtain limits on the eigenspectra of spatial networks, we
require the expected extreme values [, ] and | W, | of summed
excitation and inhibition within the partition estimates, as
discussed in Egs. (9) and (10) in the body of the paper. Since
the elements in Bg and B, are highly correlated, the central
limit theorem does not apply and sums of columns of W
are not normally distributed. This caveat applies particularly
badly for small D and x <« 1. However, by framing our
analysis to apply across many instances of networks we can
neglect these correlations and assume that elements of W are
independent.

Under the assumption of independence and since the matrix
S is appropriately normalized (i.e., E[XS] = N), sums of
L elements of S for i # j are distributed according to a

—acot[6+/2k/In x(1 + 18«2 1Inx)]})

(A3)
Sk,2,1 g x <1
Sk23 <X < S¢22
(A4)
Sk22 X < Skl
Seo1 <x <1

(

gamma distribution X; S;+; ~ Gamma(op, 8p) where ap =
LE[gp)/o?, and 6p = o, /(E*[gp](N — 1)+ Elgp)).

The extremal values of sums X; S fori # j are distributed
according to

|_Z S _| R FG(aDvo’%)L_l —X I —l+0(D9*OZD
izl X ————2exp| — |Lx ,
e [(ap) P %, P
Tr(ap, =) ! —x
Z Si . 2 D _ L —]+01D070‘1),
305 &~ exp (22 ) Lx o
(A3)

where the estimate of a maximum is denoted by [-] and
an estimate of a minimum is denoted by [-], I'(z) is the
Euler gamma function, ' (a, 20, z1) = ['r(a, z0) — Tr(a, 21)
is the generalized regularized incomplete gamma function,
I'r@a,2) =T(a)"! f:o 19! exp(—1)dt is the regularized upper
incomplete gamma function, and «p and 6p are the shape
and scale parameters of the gamma distribution. Because each
neuron is permitted to make self-connections, the diagonal
entries of S are given by S,—; =s;; = {E[gp] - (N — 1) +
1}~!. Equations (A8) can be evaluated numerically by taking
the natural logarithm of both sides. Due to the correlations
introduced by the symmetric structure of S, tighter estimates
for E[X;S;+;] and E| £ S;+;] can be obtained by replacing
agu with 05?0 /(1 4+2D7") when deriving parameters for
Egs. (A8).

APPENDIX B: ANALYSIS OF INDIVIDUAL
COMPONENTS OF EQ. (10)

The estimated upper real bound of the eigenspectrum for
a matrix W describing a network with spatial and functional
constraints (i.e., k < 00) is given in Eq. (10) as

214 ] = [Weel— Wi JH[([ee ] + L5 ])* — 4Tei ] Lthie )17
(B1)

The distributions for @, in Eq. (B1) are analytic, and can
be more readily related to the parameters defining the network
connectivity if one recognizes that each of , is a function of D
and «, related through sums of the spatial constraint matrix S.
For example, We.(k, D)~ wgl[s;i(k,D) + Za—pyn-15, D)],
and similarly for the other w,. The explicit values for each
extremal estimate used to calculate [1 ] in Egs. (10) and (B1)
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FIG. 4. Plots of extremal weight component estimates W, used to calculate E[A_7 (left column) and E[A | (middle column). At right are
shown analytical estimates for E[A, ] and E[A_] (gray curves), as well as the empirical A, and A_ (black dots) computed numerically for many
instances of W. For all panels r = 0, h;, hg = 1, N = 6000, wg = 2, w; = 8, and f; = 20%. Values for D: (a) 1, (b) 5, (c) 10. A comparison
between predicted and empirical A, and A_ for D = 2 is shown in Fig. 2(b).

are given by

[Wee(k, D)] = wg{sii(k,D) + E[X1_mn-1S(k,D)1},
LW;;(k,D)] = wi{sii(k,D) +E| X ny_1S5k,D)]},

(B2)
Wi (1, D)| = wy -E|Xq-f)nSk,D)],

|—'I;l\)ei(K,D)-| = WE 'E{EfINS(K’D)—L

where EJ[-] is the expectation operator and with the maximum
and minimum extremal distributions denoted by [-] and |- |, as
in the main text. Expressions for s;;(«, D) and for X; S(k, D)
are given in Appendix A and in the main text. Figure 4
illustrates how the values of w,, E[A,], and E[A_] vary
depending on the dimensionality of the network D and on
the spatial range parameter «.

Matlab code is available to generate the family of matrices
defined in this paper [48].
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