Analyser

v1.06

PlayTime!

v0.04 alpha

.07

_'f";U:_S.é:ri.éUideS

15™7 aﬁuary, 2001

" Last Modified

30™ January, 2001

Analyser version

1.06

PlayTime version

0.04a

© 2001 AdAstra

Dylan Muir

© 2001 QUT SDRL

(dr.muir@student.qut.edu.au)

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

Analyser Quick Guide

Welcome to Analyser!
1.06 build: Jan 9 2001 10:07:34

1. Dismiss the welcome message by tapping the
“Close” button.

This is the message log windaw,
Dismiss it by clicking the 'Close’
butkon below,

You can berminabe on an erpz
clicking the ‘Terminate’ by
below,

| Close

|Clear Log | |Terminate|

[

00000 1o Ox40100d0]

AN SMEM SR Oene [aal

2. Tap the “Choose Process” button on the
command bar, and select a process to inspect.

Tap the “Select” button to view the process. choose a process to view...

WINCE kernel {no access) “
Filesys, gxe —
QEs, BxE
device, exe
shel3z2.exe
EzExplarer . exe
voicstub. exe
bTask.exe
repllog. exe
rapisry, exe L

IDaapp. exe
Protatypes. exe
< jrmr:nr FYF El

Zancel |

Mnemonic

Hex 1 | 3. Use the “View” menu to select a format in which to view the
ASCII 2 | process’ data.
Unicode C

C

0

ACIE

4. Use the scroll bar and the up / down buttons to navigate through
the process’ memory space.

&II

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

Overview

Analyser and PlayTime together comprise a toolkit for learning
about programs and data structures in memory. The two tools run
under Windows CE, which provides a portable and accessible
environment on which to experiment. Students can inspect and
modify all programs on the machine, including portions of the
operating system. Because the Windows CE OS is stored in
Read-Only Memory, it cannot be corrupted. The system is
therefore quite robust, and places no limitations on tinkering.

Analyser enables the data of running processes in memory to be
inspected and modified in a variety of formats. It can also
disassemble processes to display the source code in SH3 assembly
language. It provides tools to locate and analyse data structures,
and to navigate through a process’ entire address space.

PlayTime is designed as a set of exercises to help the student become
familiar with the internal structures of programs. PlayTime provides a
number of data structures that are easily inspected and modified by
Analyser. Students will learn how to decode basic data structures such
as text, integers, floating point numbers and arrays. PlayTime also
allows a section of its code to be modified and executed. - The results of
these changes can be seen through a number of dedicated output fields
accessed from the user interface of PlayTime itself.

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

Table of Contents

Analyser QUICK GUIdEe........cooiiiiiiiiir 3
L0 1 YT 5
Table of Contents.........ccccci e 7
Analyser user guide.........ccciiiii i ——————— 9
MESSAJE LOG WINAOW......ceiiiiiiiiiiiiiii ettt 9
Main WINdOW & COMMANTScooiiiiiiiiiiee e e e e e e e e e et e e e e e e e e e eeeeeenna e e e e e eaeeeeeenes 10
Viewing formats & desSCriplionsoooiiiiiiiiii e 13
[L= G (0] 0 T SRR 13
L a1 oo o L= ()4 4o = | S SP 13
S O | o 4 o = | S 14
] IO 0 1= o o) o SRR 14
SEIECHNG PrOCESSESuiiii ettt e e e ettt eeennan s 15
Locating data.........ooooiiiiiii 16
MOdifyiNg dat@.......cooiii 17
PlayTime USEer QUIAEccoeeueiiiiiiieiiiirnce s s rssmnsssrssmssss s s e smnsss s s s smnsssssnnmsssssssnnnsssssnnnnssssnnns 19
U oo TS = PP 19
Using Anlayser with PlayTime! 20
Main window and command Dar...............oiiiiiiii i 22
DeSCriptioN Of EXEICISES ...uuiii it e e e e et e e e e e e e e eeeeennnan 24
o To =T o g I T a1 { 30 1013 =T S 24
10T [T =T = | USSP 25
Do 10 o] [T 4 = SRR 26
YT a1 TSI 4 = YR 28
1Y/ oo 1137Z=T o (= oo Yo [0 o] Lo o1 QOO 31

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

AdAstra Analyser v1.06 and PlayTime! v 0.04a

Printed 30 January 2001

Analyser user guide
Message Log window

When Analyser is first loaded, the Message Log window appears with some basic information.

Build
information

Analyser Message Log...

foe]

Welcome to Analvser!
1.06 build: Jan 9 2001 10:07:34

This iz the message log window,
Dismiss it by clicking the 'Close’
buktan belaw,

Youl can kerminate on an error by
clicking the 'Terminate’ button
belav,

v

| Close | |Clear L|:u;|| |Terminate|

Logged
i messages

\{

The Message Log keeps a record of all messages and information displayed to the user in an
Analyser session. The Message Log is also used to display process information and help.

To close the window and return to the main Analyser window, tap the “Close” button.
To clear the current log, tap the “Clear Log” button.
To terminate Analyser on receiving an error, tap the “Terminate” button.

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

Main window & commands

Analyser is primarily a program for inspecting and modifying processes in memory. The majority
of the main display is taken up by the memory dump view. This is a list that displays data residing
in memory in various formats. To the right of this list is the scroll bar by which memory can be
navigated. At the top of the screen are the menus and tool buttons that control how memory is
viewed, along with the status bar.

[view viein | |8[5E] E]E]

hestidecirmal [0x4010400 to Ox4010b40]
O400: Q000 adon SDED 6037 00aa u

AN

0404: 0000 0400 0000 1001 0000
Menus, tool buttons 0414: 0000 0000 OOAE 0100 0000

Fs

Memory dump
d status b 041E: 0000 SDED 607 0000 0000 T | scroll bar
and status pbar 0428: 0200 0000 5800 0000 0000

0432 0000 10AF 0100 0040 aood
C043C: 0000 Ado0 0aao 00aa aooa
O446: 0000 O000 0aao 00aa aooa
C0450: 0000 ado0 ES22 0100 a0oa
CO454: 0000 3C17 0100 2015 0100
0464, 701C 0100 341E 0100 ACIF

O45E: 0100 1825 0100 C327 0100
O478: 6C19 0100 C314 0100 4415

AN

0482: 0100 C454 0100 5873 0100
Memory dump 048C: 985E 0100 8C63 0100 CC74
0406: 0100 EOBE 0100 4444 0100 |~

ﬂ

view 0440; 784F 0100 G0AE 0100 S5E0
0444: 0100 S4B2 0100 ACAE 0100

@A Start|

[L. oaH00%

Memory is navigated through a series of regions of data. A single region can contain up to 500
lines of contiguous data in a particular format. The scroll bar next to the memory dump scrolls
through this region. The region Up and Down buttons (above and below the scroll bar,
respectively) shift the memory dump view to the previous or next region in memory.

Previous region

u
F

\ B Scroll view

-

D||L——1 Next region

Because of the way a process allocates its storage in memory, not all of the process’ data will be in
the same area of memory. Analyser will only ever show regions of memory that have been
allocated to a process. The next and previous region buttons will move the memory dump view to
the next or previous viewable areas of memory. This may not be contiguous with the previously
viewed region.

10

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

The status bar displays the start and end address of the current region, as well as the format the data
is being viewed in. The range addresses are displayed in absolute terms, and indicate the first byte
within the region and the last byte of the region. These absolute addresses are seven or eight hex
digits (up to 4096 MB). A relative address (obtained from within a process) is based at the
beginning of the process’ page, and is usually five or six hex digits (can be up to 32 MB).

[view neip | 5[50 [E]

hexidecimal [0x4010400 to Ox4010640]

0<00: 0000 0000 SDEC 6037 0000 E
MM FIOrr MEmr coer et mree

The lines in the memory dump view begin with the abbreviated address of the first byte on the line.
The rest of the line displays data in memory in the specified format.

FNEAIWTI N TIT]T ATO LUTTUL U AT L |
0400: 0000 0000 SDEQ 6027 0000
04040000 0400 0000 1001 aaoo L

. LT LIy
A1 Annn EMEr S Z\Ommm s

\

Dump display

Address of
first byte

The view menu on the command bar enables the user to change the viewing format of the memory
dump. Memory will be displayed in the new format from the first byte of the current region.

[view [Help [SHTT >

hexidecimal [Ox4010400 o

T T A e o Py

il

Hex
ASCII
Unicode
Mnemonic

[s A A

To select a process to view, tap the “Select Process” button on the command bar. A dialog will pop
up, listing all currently executing processes. Selecting a process will cause the memory dump view
to display memory from the start of this process, in the current display format.

o] [=10

D010 0 Obd0]
e s E=E = i . WinCE kernel (nio access) a
\/\/\ F"ES':-"S.E}{E o
N[[owes.exe
device. exe
shell3z. exe

EzExplorer.exe
woicstub, exe
bTask.exe
repllog, exe
rapisty . exe —
Fnaapp.exe

Prokobyvpes exe |E|
"FME0 ™ FYF

Cancel |

To quickly find a specific address within the current process, tap the “Locate Address” button on
the command bar. A dialog will pop up to enable entry of the address. An address entered in this

11

AdAstra Analyser v1.06 and PlayTime! v 0.04a

Printed 30 January 2001

dialog box is assumed to be zero-based at the beginning of the current process’ memory page. This
enables the entry of relative addresses as well as eight-digit absolute addresses.

Locate Address

Enter the address to locate in

e

Elxl

ancel |

The “Process Info” button on the command bar displays the name of the process and the memory

region allocated to the process.

--- Info

Process name; filesys, exe
Process number; 1
Mermnary block:

004000000 (0x04010400) ko

De0SFEFFFF {O0SFeafff)

The “Show Message Log” button on the command bar displays the Message Log window, if it is

hidden.

|E

To quit Analyser at any time, tap the “Close” button on the command bar.

12

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

Viewing formats & descriptions

Analyser is capable of interpreting and displaying memory in hexadecimal notation, text (ASCII
and Unicode) and disassembled SH3 mnemonics. The View menu switches the display between
these formats.

il

Hex
ASCII
Unicode
Mnemonic

e

Hex format

The default viewing format for Analyser is hex. Data is displayed byte-by-byte in hexadecimal
(base-16) notation. A single byte is two hex digits.

5 = = i PISA AT T IS AT LT L LA T L iAdL |
| view Heip | =8|t (5| E| 0400: 0000 0000 SDED 6037 0000
Hexidecimal [0x4010400 to Ox<40106d0] 0404: 0000 0400 0000 1001 0000
0400 0000 0000 SDED 6037 0000 E 0414 0000 0000 00AE 0100 0000
AN OOAN F400 0000 1001 0non T PR R AT AR Annn

The Hitachi SH3 processor used by the HP Journada uses little-endian addressing. This means that
when a word or longer data structure is stored in memory, the least significant byte (LSB) is stored
at the lowest address, followed by the next significant in order up to the most significant byte
(MSB) at the highest address. In Analyser, the data appears left to right from LSB to MSB. This is
intuitive for single byte data, but reads backwards to how we would write a four digit hex word or
an eight digit hex double-word. The double-word 0x12345678;¢ would appear as “7856

3412” in Analyser.

The bytes on a line of hex data are grouped in twos for ease of reading, but are still displayed in
sequential order.

Unicode format

All strings in Windows CE are in Unicode format, which allows extended character sets for Kanji
and other scripts. The display in Analyser is filtered to display only printable characters. All other
characters are replaced by a full-stop (*.”).

| view Help ||&|Gt:) |E5H|) i VB

unicode [Ox4010400 to 0x4010200] 0844 b | %Yos, SystermnHeap.
Q400 W 067E: .caredll.dll.Localalloc, Heap
M= DGEE: Alloc LocalFree.HeapFree.

0aF2: Prefs,SoftwaredMicrosoft, Clo
072C: ck. HomeDST.\ Windows), SystermP
0766: tchiModu e exe. WHndows. ... m

[mr e Loy =

Unicode characters are two bytes in length. Printable Unicode characters have the same byte codes
as their standard ASCII counterparts, but are padded out with zeros to fill two bytes.

13

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

ASCI| format

The ASCII viewing format interprets all data as standard C strings. Like Unicode format, Analyser
filters the data to display only printable characters. ASCII characters occupy a single byte each. A
Unicode string viewed in ASCII format will have a character every second byte and a <nul> (0x00

character) every other byte.

= b | [SIS 0 otinpnnnonnnonnnn0nnnan0nnoon,
| view Heip | |G| B) 064d: Yoo)
ascii [0x4010400 to Ox4010800] 0661 %5 SystemHeap..
[} =3 T E 0e7E: ..c.ooredLl..dLlL.Lo
n=rn: 0598 .c.a.lAlloc... Heap.

oeeg: Allloc..LocalFree
0aebs: . H.eapFree.. . W32a,,
oarFZ: . P.refs Software

L L R, B R L T Y

Compare the (ASCII) text shown in the image on the right with the same text in Unicode format on
the previous page.

SH3 mnemonics

This format attempts to disassemble data in memory into Hitachi SH3 assembler mnemonics.

N o [k | [(B] = REpy = FAi =y A]
| view Help ||-8|Gt| || OBG4: [D125] MOV L @{H'25,PC),RL
SH2 source [0x4010620 to Ox<010ch0] OB&6: [6412] MOW.L @R1,R4 i
OBSE: [011E] MOW.L @(RO,R13,R1 E 0BG [D123] MOW.L @H'23,PC,R1
ARG T21181 TST R R OEGA: [6512] MO L @R1,RS

OBaC: [EGOO] MO #H'0,RE

CBSEY[EF24 MOy #H'24 R7

B0 [[A026] MOV.L @i\, PC),RO
OB72: FMO0E] ISR @RO
DA roarmT e

Address of Machine code Disassembled
instruction instruction instruction

The machine code instructions are shown in square brackets, followed by the disassembled opcode
and operands. Invalid instructions are shown by a message, and are a good indication that the area
of memory currently being viewed is not code!

The SH3 has a RISC (Reduced Instruction Set Computer) type instruction set, so all machine code
instructions fill a word (16 bits). This is in contrast to a traditional instruction set machine such as
an Intel x86 processor which has variable-length instructions.

14

AdAstra Analyser v1.06 and PlayTime! v 0.04a

Printed 30 January 2001

Selecting processes

To select a running process to inspect, tap the “Select Process” button on the command bar.

Choose a process to view...

WinCE kernel (no access)
Filesys, exe
Qwes, exe
device, exe
shel3z. exe
EzExplorer.exe
voicskub, exe
bTask.exe
replliog. exe
rapisty . exe
rnaapp.exe

Prokokbypes. exe
"FMRT FYF

F N
—

K

Cancel |

A dialog will pop up, listing all the currently executing processes. The first process in the list is
always the Windows CE kernel. This process is protected, and cannot be inspected or modified.
All other processes are listed as the name of the executable file where they originated. Choose a
process from the list and tap “Select.” The memory dump view will switch to the first region of

memory viewable in the process.

The Windows CE operating system consists of five processes, including the kernel.

nk.exe Contains the Windows CE kernel (protected).
filesys.exe | Manages the persistent object store database and transactions.
gwes.exe Supports the Win32 system API and windowing system.

device.exe | Manages system devices and device drivers.

shell32.exe | Provides the system shell and user interface (taskbar, etc.).

15

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

Locating data

To jump directly to a known address in memory, tap the “Locate Address” button on the command
bar. A dialog box will appear to allow the entry of an address to display in the memory dump view.

a "'§ I;t i= Locate Address

Dx4010400 401

= e T . \J\ Enter the address to locate in
‘\\1//> hes:

MI

Zancel |

Processes in Windows CE have a 32MB virtual address space each.
0x0200000016

P 1 (32 MB
rocess L32MB) | o3esrree,
0x0400000016
Ox05ffffffe

Process 2 (32 MB)

0x640000001¢

Process 32 (32 MB) 0x65FfFfEffq

The Microsoft Windows CE documentation has this to say about loading processes into memory:

When a process initialises, the OS stores in the slot that is assigned to the process
all of the dynamic-link libraries (DLLs), the stack, the heap, the application code,
and the data section for each process. DLLs are loaded at the top of the slot,
followed by the stack, the heap, and the executable file (.exe). The bottom 64 KB
is always left free.
MSDN Library, July 1999

A local (relative) address displayed from within a process is zero-based at the start of the process’
virtual address space. Therefore if process 2 displays an address of 0x1050;6, this address is really
0x04001050,6 in the system’s virtual address space. Analyser understands this, and if you enter a
relative address into the locate address dialog box Analyser will compensate for this offset. If you
enter an absolute address with the full eight hexadecimal digits, Analyser will understand this, too.

If the address is both within the memory space of the current process and is viewable, then the
memory dump view will jump to display the data at the desired location.

16

AdAstra Analyser v1.06 and PlayTime! v 0.04a

Printed 30 January 2001

Modifying data

Analyser allows the user to modify data in the address space of the current process. Double-tapping
on a line of data in the memory dump view will display the “Modify Data” dialog box.

Viewing and entry
format

User-entered
data

mm | Prefs. Sofbwarei MicrosofthClo

Data in memory
dump view

Modify Data

Current Daka

Original data

2E00 5000 7200 6500 6600 7300 2E00 530 [

Madify I |

l = .
0766; tchModule. exe, S Windows, ...

VA AN

07800 v, @, ... ~
0704 ... VM IndowesLD D
g start| 38| 3, 50 [3:00| %]

Prefs, SofbwareiMicrosoftiClo T |
0000 S000 7200 6500 6600 7300 0000
N -
N Farmat Junicade |
New data p o Evaluation button

User data
translated to hex

The original data is displayed in the current viewing format as well as in hexadecimal notation. The
user can enter new data in the same format using the software keyboard. The “Evaluate” button
checks the validity of the new data, and translates it into hex. The “Modify” button attempts to
write the new data into memory over the old data.

Data cannot be modified while it is being viewed as disassembled SH3 mnemonics. Code must be
manually assembled into hex machine code, and entered into memory using the hex viewing format.

When entering hex data, there must be an even number of hex digits in the new data. Single digits
cannot be translated into binary data.

17

AdAstra Analyser v1.06 and PlayTime! v 0.04a

Printed 30 January 2001

18

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

PlayTime user guide
Purpose

PlayTime is a simple “test bed” application, designed to be modified while in memory. In
conjunction with a debugger or memory dump program such as Analyser, the student can learn
about the structure of data and its layout in memory. PlayTime has been designed with a simple set
of exercises in mind. Various types of data can be modified by the user, and the effects of these
modifications can be viewed either within PlayTime itself or by using Analyser.

19

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

Using Anlayser with PlayTime!

1. Start PlayTime using the Start menu.

:ﬂ:"}
e

B e g i K«\

i Analyser
* PlayTime!

(&5 Programs
&% Settings *

A2 Find...

7 Help

2. Start Analyser using the Start menu.

. :’;
g

%ﬁi

?\.\l.ﬁ

e o

=4 Analyser
iy Play Time!

(&5 Programs
&% Settings »

2 Find...

3. Tap the “Select Process” buttonwithin Analyser, then select “playtime.exe”.

S0

Ox4010400 to Dx401064d0]
R [l 'WiniZE kernel {no access) -~
Filesys, exe —
ques, exe
device,exe
shell32.exe
EzExplorer.exe
woicskub, exe
hTask.exe
replliog. exe
rapisty, exe

Select I | Cancel I

20

AdAstra Analyser v1.06 and PlayTime! v 0.04a

Printed 30 January

2001

4. Use the View menu within Analyser to change to different viewing formats. The first segment

of the process memory space is taken up by the process’ code. Switch to Unicode format and

use the “Buffer Up/Down” buttons to search for text data and string variables. Use Hex format
to compare Unicode data, ASCII data and their hexadecimal values. Keep in mind that the SH3
processor (which is driving the Windows CE box) uses little-endian storage.

Hex

ASCII
Unicode
Mnemonic

\il

e i=Rul

5. Use the “Find Addresses” button within PlayTime and the “Locate Address” button within

Analyser to examine the data associated with PlayTime’s exercises. Modify the different data
regions using Analyser, and examine the results in PlayTime.

2]
R~ [PlayTime 0.04a |

“Find Addresses” in PlayTime M

0x4010400 1o 0x<40100d0]

AMEE EMEN eSS Senr [aul

“Locate Address” in
Analyser

= Bl

<—3

Locate Address

Enter the address to locake in
he:

Elxl

Cancel |

Addresses of test regions

The Program Info buffer is ak Ox132a0
The integers For addition are at 0x14280
The doubles For addition are at Ox 14480
The strings For sorking are at 0x142a0
The code For execution is at 0x10893

Modify Data

Current Data

. Oukpuk area, STATIC, Add Dou

0000 Q000 4500 7500 7400 7000 7500

Format Junicode

Mew data
. Oubput area, STATIC, Add Dou

I Modify I |

ZEAD: ..Oufput area, STATIC, Add Dou u
ZFDA; bles BUTTOMN, . Output area, STAT
3014: IC..Sort Strings. .BUTTOM, Exe m

) start | .| iaﬁﬂﬁl

6. Use PlayTime to learn how the different formats of data work. Manually compile some SH3

21

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

Main window and command bar
To start PlayTime, use the Start menu.

R irraeandtd
i Analyser
* PlayTime!

(= Programs »
&% Settings »

2 Find...

7 Help

When PlayTime is loaded, the main window appears on the screen.

_—| 2]
Command Bar = —

.- PlayTirne 0.04a :
Utility buttons [an O 2001 16:27:33] Program build

and close button. information
Program Info
| Add Ints |||Dutput area | |
Add Duuhles|i|0umut are3 | \ = oo

Exercise buttons Sort 5trings feedback areas

| Exec Code |[Cutput area |
I

A start] B 4] 5%, 00 3:32 2

The help button provides a brief overview of PlayTime.

2|
R, [PlayTime 0.04a |

22

AdAstra Analyser v1.06 and PlayTime! v 0.04a

Printed 30 January 2001

The “show strings” button displays the content of the user-modifiable strings.

The “find addresses” button assists in locating the user-modifiable areas in memory by displaying

the addresses of these regions.

Strings

This is string O
This is string 1
This is string 2
This is string 3
This is string 4
This is string S
Thiz is string &
This is string 7

BB
R~ Permeoss |

Quit PlayTime by tapping the “close” button.

Addresses of test regions

The Prograrm Info buffer is ak Ox132a0
The integers for addition are at 0x14280
The doubles Far addition are at Ox14430
The strings for sorting are ak Ox142a0
The code for execution is at 0x10395

R~ Prmeone |

23

_ w AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

Description of exercises
Program info buffer

The program info buffer is a segment of memory initialised to a paragraph of text concerning
PlayTime. It can be modified by using Analyser, and dumped to the screen by tapping the
“Program Info” button..

Program Info

3292 ... This prograrn can be us
Program Info Text 32CC ed 1o test the effects of edi

3306; ting data and code, LUse Anal
This program can be used ko test the 3340: yaer to search for and rmodify
effects of editing data and code. Use 3374 the various forms of data in
Analyser to search for and modify the 384 memary, Lse the buthons in
warious Forms of data in memory. Use 33EE: the main window to see the ef
the buttons in the main window to see 2428: fects of your modifications..
tl'lE‘-' EFFECtS l:IF WOy I'I'Il:ll:liﬁl:atil:ll'ls. 3462: mmmmmm T e

AT, FrEEEEEEEEEEEE IR
MO8, = rrrrrrrrrrrrrEEl
010 e rrrrr R
A9dA FrEEEEFFRFRFFFRREE IR
G it a i HE e e e
J9BE: oo PlayTime....

The image on the right is what the program info buffer looks like in memory, viewed with
Analyser. The buffer is initialised with the information text, and then padded out with >’
characters.

This is the code used to initialise the data in the C programming language:

#define MAX STRING 400
TCHAR szProgInfo [MAX_STRING] g
UINT ulndex;

for (uIndex = 0; ulIndex < MAX STRING; ulndex++) {
szProgInfo[ulIndex] = L'>';

LoadString (hInstApp, IDS PROGINFO, szProgInfo, MAX STRING) ;

24

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

Integer array

PlayTime provides an array of four integers which can be modified and then summed together by
tapping the “Add Ints’ button. The resulting sum will appear in the adjacent output area.

4280, 6728 0000 CESG 0000 3582

Add Ints | |':'U1I'Ut ares | 4284 0000 9CAD Q000 0a00 0adad

The image on the right is how the integer array is represented in memory, viewed with Analyser.
The array is initialised to a sequence of integers summing to 111110y,.

|Resu|t: 111110 |

This is the code used to initialise the data in the C programming language:

int nAddInts [4] ;
UINT ulndex;

for (uIndex = 0; uIndex < 4; ulndex ++) ({
nAddInts [uIndex] = 11111 * (int) (ulIndex + 1) ;
}

nAddInts []
0 111114 | 0x00002b67 ;6
1 2222240 | 0x000056¢e;6
2 33333 | 0x00008235¢
3 44444, | 0x0000ad9c;¢
Sum 111110;9 0x0001b206:6

The data is stored in memory using little-endian addressing. This means that when a word or longer
data structure is placed in memory, the least significant byte (LSB) is stored at the lowest address,
followed by the next significant in order up to the most significant byte (MSB) at the highest
address. In Analyser, the data appears left to right from LSB to MSB. This is intuitive for single
byte data, but reads backwards to how we would write a four digit hex word or an eight digit hex
double-word. The double-word 0x123456781 would appear as “7856 3412 in Analyser.

25

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

Double array

PlayTime provides an array of four double precision floating point numbers which can be modified
and then summed together by tapping the “Add Doubles” button. The resulting sum will appear in
the adjacent output area.

Yiew Heip EPIERNEE:

s 0000 0000 0000 FO3F o000
4488 0000 0000 0040 0000 o0
4494 0000 0240 0000 0000 0000
449E; 1040 0000 0000 0000 0000
|A.l:|l:| DDLIDIESl |C||_,|tp|_,|t area | 4448: 0000 0000 1422 0000 0004

4482 0000 0004 0100 2000 0000

_ AADE D IOEO AOEN ArTA Orne OeeeA

The image on the right is how the array of doubles is represented in memory, viewed with Analyser.
This array is likewise initialised to a sequence of floating point numbers, summing to 10.00.

Rezult: 10.000000

This is the code used to initialise the data in the C programming language:

double dAddFloats [4] ;
UINT ulndex;

for (uIndex = 0; uIndex < 4; ulndex++) {
dAddFloats [uIndex] = (double) (uIndex + 1) ;
}

dAddFloats[]
0 1.001¢ | 0x3£f0000000000000+4
1 2.0019 | 0x40000000000000004¢
2 3.00;¢ | 0x4080000000000000;¢
3 4.0010 | 0x4010000000000000+¢
Sum 10.00,p 0x40240000000000004¢

Floating point numbers in Windows CE are stored in the IEEE floating point format. The number
is split into three components: the sign (+ / -), the mantissa (the sequence of digits that comprise the
number, ignoring the decimal point), and the exponent. The number is reconstructed using the
formula

num =—1° - (1.M,)- 2157270

In 32-bit IEEE format, 1 bit is allocated as the sign bit, the next 8 bits are allocated as the exponent
field, and the other 23 bits contain the normalised mantissa. When converting a number into
floating point binary, the digit values are as follows:

L 8[4]2]1]e] 1205 | 1/4025 [1/8(0.125) | 1/16 (0.0625) | ...

As an example, the steps to convert 9 97/128;¢ (9.7578125) into IEEE floating point are shown
below.

26

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

1. Convert 9.7578125) to binary floating point notation.
910=8+1-> 1001,
0.757812510= 0.5 (1/2) + 0.25 (1/4) + 0.0078125 (1/128) = 0.1100001,
= 997/128,9=1001.1100001,
2. The exponent is currently 0. However, we have to shift the number into 1.xxxxxx... format.
1001.1100001, - 1.0011100001, * 2°
The exponent is therefore 319. The exponent field has a 127, offset.
s E= 310 + 12710 = 13010 9 010001 102
3. Aleading 1 before the decimal point is assumed for the mantissa, so
M =00011100001000000000000,
4. The number is positive, so the sign bit is 0.

S=0
The final representation of the number is
Sign Exponent | Mantissa
0 01000110 | 00011100001000000000000
Bit 31 |30 23 | 22 0

which gives the double-word 0x230e1000;s.

There are some special representations for exceptional cases

Sign Exponent Mantissa
? Oxff 0x00 + /- Infinity
? 0xff NOT 0x00 | NaN (Not A Number), Overflow, Error, etc.
? 0x00 0x00 Zero
? 0x00 NOT 0x00 | Smaller than smallest precision

27

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

Strings array

PlayTime provides an array of eight strings that can be modified and then sorted in memory. To
display the current contents of the string array, tap the “Display Strings” button on the command

bar.

To sort the array alphabetically and then display the result, tap the “Sort Strings” button.

4240 This is sfring 0.00000000000.
4208 This is string 1.11111111111.
4314: This is sfring 2. 22222222222,
434E: This is sfring 3.33333333333,
4388 This is siring 4.44444444444,
42C2: Th_is _i5 Sh'_ing 5.55555555555.

43FC: This is string 6.666066666666,

4436 This is string 7.7 7777777777,

Strings

This is skring 0
This is skring 1
This is skring 2
This is skring 3
This is skring 4
This is skring 5
This is skring &
This is skring 7

The image on the right is how the array of strings looks in Analyser. Each string is padded out with
the number of its position in the array. When the “Sort Strings” button is tapped, these strings are
moved around in memory to place them in alphabetically sorted order. The sorting performed by
PlayTime is case insensitive.

28

AdAstra Analyser v1.06 and PlayTime! v 0.04a

Printed 30 January 2001

This is the code used to initialise the data in the C programming language:

#define

TCHAR
TCHAR

szSortO0
szSortl
szSort2
szSort3
szSort4
szSorth
szSorté
szSort7

for

}

wsprintf (szSorto0,

SORT STRING LENGTH 29

szSortStrings [SORT STRING LENGTH * 8];

*szSorto,
*szSortl,
*szSort2,
*szSort3,
*gszSort4,
*gzSorths,
*szSorté,
*szSort7;
= szSortStrings;
= szSort0 + SORT STRING LENGTH;
szSortl + SORT STRING LENGTH;
szSort2 + SORT STRING LENGTH;
szSort3 + SORT STRING LENGTH;
szSort4 + SORT STRING LENGTH;
szSort5 + SORT STRING LENGTH;
= szSorté + SORT STRING LENGTH;

(uIndex = 0; uIndex < SORT_STRING LENGTH - 1; ulIndex++)
szSort0 [uIndex]

= L'0';

L"This is string 0");

{

szSortStrings[]

0

“This is string 0”

“This is string 17

“This is string 2”

“This is string 3”

“This is string 4”

“This is string 5”

“This is string 6”

< 0 Ul W N

“This is string 7”

29

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

In the example below, the strings were modified using Analyser. When the “Sort Strings” button
was tapped, the strings were moved into sorted order in memory.

42480: This string will not be 11.0.
4204 Original string. 111111111111,
4314 This is a siring. 22222222222,
434E: This is string 3.33333333333.
4383; This is string g.44444444444,
43C2; This is string 5.95555555555.
43FC: This is string x. 66606566555,
4436; This is string 7. 77777777777,

Sorted strings

Crriginal skring
This is a string
This is string 3
This is string 5
This is string 7
This is string q
This is skring
This string will not be 11

42080; Qriginal string. not be 11,0,
4204; This is a string.not be 11,1,
4314 This is string 3.not be 112,
434E: This is string 5.not be 11,3,
4383 This is string 7.not be 11.4,
43C2: This is string g.not be 11,5,
43FC: This is string x.not be 11,6,
4436; This string will not be 11,7,

30

_ w AdAstra Analyser v1.06 and PlayTime! v 0.04a

Printed 30 January 2001

Modifyable code block

PlayTime provides a segment of its code space for modifying. Using Analyser, the user can

manually compile SH3 assembler mnemonics and enter them into the code space in hexadecimal
format. Tapping the “Exec Code” button then executes this code and displays the return value.

|ExecCude ”OUmUtHEH

The modifiable region in memory is initialised to a C
function which fills an array and returns a hexadecimal
value. The image on the right shows the disassembled C
function, viewed with Analyser. This region of memory
can be modified by Analyser in hex viewing mode, and
the function can be replaced with manually assembled
user code.

Function source code in C:

DWORD ExExecuteCode (void)

{
DWORD dwBlock [40] ;
dwBlock [0] = 0x1234;
dwBlock [1l] = 0x1234;
dwBlock [2] = 0x1234;
dwBlock [3] = 0x1234;
dwBlock[4] = 0x1234;
dwBlock [5] = 0x1234;
dwBlock [6] = 0x1234;
dwBlock[7] = 0x1234;
dwBlock [8] = 0x1234;
dwBlock [9] = 0x1234;
dwBlock [10] = 0x1234;
dwBlock [11l] = 0x1234;
dwBlock [12] = 0x1234;
return (0Oxabcd) ;

}

The image on the right shows the assembled code.

¢ [9133] MOV W a@iH"35,PC,RL
0594:
0Eac:
O29E:
03A0:
02AZ:
02a4:
O3AG:
0z45:
02a8.:
O3ALC:
OSAE:
O=B0:
OsB2:
05B4:
O2Ba:
o=Ba:
OSBA:
03B
O2BE:
0aca:
0aC2:
02C4:
0aCa:
03Ca:
OBCA:
OacC:
O3CE:
o30a;
» [91187 MOV W @iH"18,PCLRL
. [OO0B] RTS

[3F18] SUB R1,R1S
[9134] MOV, W @{H'34,PC),R1
[2F12] MOW L R1,@R1S
[9232] MOV, W @(H'32,PC),R2
[1F21] MOY.L R2,@(H'1,R15)
[9330] MOV, W @(H'30,PC),R3
[1F32] MOV.L R3,@(H'2,R15)
[912E] MOV, W @(H'2e,PCI,RL
[1F13] MOV.L R1,@(H3,R15)
[9220] MOV, W @(H'2c,PC),RZ
[1F24] MOV.L R2,@(H'4,R15)
[9324] MOW. W @(H'2a,PC),R3
[1F35] MOV L R3,@(H'S,R15)
[9128] MOV, W @(H'28,PC),R1
[1F16] MOV L R1,@(H'E,R15)
[9226] MOV, W @(H'26,PC),R2
[1F27] MOV .L R2,@(H7 R15)
[9324] MOV, W @(H'24,PC),R3
[1F38] MOV L R3,@(H'E,R15)
[9122] MOV, W @(H'22,PC),R1
[1F19] MOV L R1,@(H'9,R15)
[9220] MOV, W @({H'20,PC),R2
[1F2a] MOV.L R2,@H'a,R15)
[931E] MOV, W @(H'le,PC),R3
[1F3B] MOY.L R3,&(Hb,R15)
[911C] MOV, W @H'1c,PC),RL
[1F1C] MOV L R1,@(H'c,R15)
[DO01] MOYW.L @(H'1,PC),RO

13591 183F 3401 122F 3292
O2AZ:
O2ALC:
05BaG:
0aca:

211F 30932 321F ZE91 131F
2092 241F 2A93 351F 2591
161F 2692 271F 2493 381F

2291 191F 2092 ZA1F 1E93
» 3B1F 1291 1C1F 0100 1891
. OBOO 1C3F CODAR 0000 242C

31

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

Analyser and PlayTime user guides last page

32

