
Analyser PlayTime!
v1.06 v0.04 alpha

User Guides
Document version 2.07

Created 15th January, 2001
Last Modified 30th January, 2001

Analyser version 1.06
PlayTime version 0.04a

© 2001 AdAstra
© 2001 QUT SDRL

Dylan Muir
(dr.muir@student.qut.edu.au)

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

2

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

3

Analyser Quick Guide

1. Dismiss the welcome message by tapping the
“Close” button.

2. Tap the “Choose Process” button on the
command bar, and select a process to inspect.
Tap the “Select” button to view the process.

3. Use the “View” menu to select a format in which to view the
process’ data.

4. Use the scroll bar and the up / down buttons to navigate through
the process’ memory space.

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

4

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

5

Overview
Analyser and PlayTime together comprise a toolkit for learning
about programs and data structures in memory. The two tools run
under Windows CE, which provides a portable and accessible
environment on which to experiment. Students can inspect and
modify all programs on the machine, including portions of the
operating system. Because the Windows CE OS is stored in
Read-Only Memory, it cannot be corrupted. The system is
therefore quite robust, and places no limitations on tinkering.

Analyser enables the data of running processes in memory to be
inspected and modified in a variety of formats. It can also
disassemble processes to display the source code in SH3 assembly
language. It provides tools to locate and analyse data structures,
and to navigate through a process’ entire address space.

PlayTime is designed as a set of exercises to help the student become
familiar with the internal structures of programs. PlayTime provides a
number of data structures that are easily inspected and modified by
Analyser. Students will learn how to decode basic data structures such
as text, integers, floating point numbers and arrays. PlayTime also
allows a section of its code to be modified and executed. The results of
these changes can be seen through a number of dedicated output fields
accessed from the user interface of PlayTime itself.

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

6

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

7

Table of Contents
Analyser Quick Guide... 3
Overview .. 5
Table of Contents.. 7
Analyser user guide.. 9
Message Log window.. 9
Main window & commands ... 10
Viewing formats & descriptions ... 13

Hex format .. 13
Unicode format.. 13
ASCII format ... 14
SH3 mnemonics.. 14

Selecting processes .. 15
Locating data... 16
Modifying data... 17

PlayTime user guide ... 19
Purpose... 19
Using Anlayser with PlayTime!.. 20
Main window and command bar.. 22
Description of exercises .. 24

Program info buffer ... 24
Integer array.. 25
Double array ... 26
Strings array.. 28
Modifyable code block .. 31

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

8

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

9

Analyser user guide
Message Log window
When Analyser is first loaded, the Message Log window appears with some basic information.

The Message Log keeps a record of all messages and information displayed to the user in an
Analyser session. The Message Log is also used to display process information and help.

To close the window and return to the main Analyser window, tap the “Close” button.
To clear the current log, tap the “Clear Log” button.
To terminate Analyser on receiving an error, tap the “Terminate” button.

Build
information

Logged
messages

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

10

Main window & commands
Analyser is primarily a program for inspecting and modifying processes in memory. The majority
of the main display is taken up by the memory dump view. This is a list that displays data residing
in memory in various formats. To the right of this list is the scroll bar by which memory can be
navigated. At the top of the screen are the menus and tool buttons that control how memory is
viewed, along with the status bar.

Memory is navigated through a series of regions of data. A single region can contain up to 500
lines of contiguous data in a particular format. The scroll bar next to the memory dump scrolls
through this region. The region Up and Down buttons (above and below the scroll bar,
respectively) shift the memory dump view to the previous or next region in memory.

Because of the way a process allocates its storage in memory, not all of the process’ data will be in
the same area of memory. Analyser will only ever show regions of memory that have been
allocated to a process. The next and previous region buttons will move the memory dump view to
the next or previous viewable areas of memory. This may not be contiguous with the previously
viewed region.

Memory dump
view

Menus, tool buttons
and status bar

Memory dump
scroll bar

Previous region

Scroll view

Next region

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

11

The status bar displays the start and end address of the current region, as well as the format the data
is being viewed in. The range addresses are displayed in absolute terms, and indicate the first byte
within the region and the last byte of the region. These absolute addresses are seven or eight hex
digits (up to 4096 MB). A relative address (obtained from within a process) is based at the
beginning of the process’ page, and is usually five or six hex digits (can be up to 32 MB).

The lines in the memory dump view begin with the abbreviated address of the first byte on the line.
The rest of the line displays data in memory in the specified format.

The view menu on the command bar enables the user to change the viewing format of the memory
dump. Memory will be displayed in the new format from the first byte of the current region.

To select a process to view, tap the “Select Process” button on the command bar. A dialog will pop
up, listing all currently executing processes. Selecting a process will cause the memory dump view
to display memory from the start of this process, in the current display format.

To quickly find a specific address within the current process, tap the “Locate Address” button on
the command bar. A dialog will pop up to enable entry of the address. An address entered in this

Address of
first byte Dump display

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

12

dialog box is assumed to be zero-based at the beginning of the current process’ memory page. This
enables the entry of relative addresses as well as eight-digit absolute addresses.

The “Process Info” button on the command bar displays the name of the process and the memory
region allocated to the process.

The “Show Message Log” button on the command bar displays the Message Log window, if it is
hidden.

To quit Analyser at any time, tap the “Close” button on the command bar.

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

13

Viewing formats & descriptions
Analyser is capable of interpreting and displaying memory in hexadecimal notation, text (ASCII
and Unicode) and disassembled SH3 mnemonics. The View menu switches the display between
these formats.

Hex format
The default viewing format for Analyser is hex. Data is displayed byte-by-byte in hexadecimal
(base-16) notation. A single byte is two hex digits.

The Hitachi SH3 processor used by the HP Journada uses little-endian addressing. This means that
when a word or longer data structure is stored in memory, the least significant byte (LSB) is stored
at the lowest address, followed by the next significant in order up to the most significant byte
(MSB) at the highest address. In Analyser, the data appears left to right from LSB to MSB. This is
intuitive for single byte data, but reads backwards to how we would write a four digit hex word or
an eight digit hex double-word. The double-word 0x1234567816 would appear as “7856
3412” in Analyser.

The bytes on a line of hex data are grouped in twos for ease of reading, but are still displayed in
sequential order.

Unicode format
All strings in Windows CE are in Unicode format, which allows extended character sets for Kanji
and other scripts. The display in Analyser is filtered to display only printable characters. All other
characters are replaced by a full-stop (‘.’).

Unicode characters are two bytes in length. Printable Unicode characters have the same byte codes
as their standard ASCII counterparts, but are padded out with zeros to fill two bytes.

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

14

ASCII format
The ASCII viewing format interprets all data as standard C strings. Like Unicode format, Analyser
filters the data to display only printable characters. ASCII characters occupy a single byte each. A
Unicode string viewed in ASCII format will have a character every second byte and a <nul> (0x00
character) every other byte.

Compare the (ASCII) text shown in the image on the right with the same text in Unicode format on
the previous page.

SH3 mnemonics
This format attempts to disassemble data in memory into Hitachi SH3 assembler mnemonics.

The machine code instructions are shown in square brackets, followed by the disassembled opcode
and operands. Invalid instructions are shown by a message, and are a good indication that the area
of memory currently being viewed is not code!

The SH3 has a RISC (Reduced Instruction Set Computer) type instruction set, so all machine code
instructions fill a word (16 bits). This is in contrast to a traditional instruction set machine such as
an Intel x86 processor which has variable-length instructions.

Address of
instruction

Machine code
instruction

Disassembled
instruction

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

15

Selecting processes
To select a running process to inspect, tap the “Select Process” button on the command bar.

A dialog will pop up, listing all the currently executing processes. The first process in the list is
always the Windows CE kernel. This process is protected, and cannot be inspected or modified.
All other processes are listed as the name of the executable file where they originated. Choose a
process from the list and tap “Select.” The memory dump view will switch to the first region of
memory viewable in the process.

The Windows CE operating system consists of five processes, including the kernel.
nk.exe Contains the Windows CE kernel (protected).
filesys.exe Manages the persistent object store database and transactions.
gwes.exe Supports the Win32 system API and windowing system.
device.exe Manages system devices and device drivers.
shell32.exe Provides the system shell and user interface (taskbar, etc.).

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

16

Locating data
To jump directly to a known address in memory, tap the “Locate Address” button on the command
bar. A dialog box will appear to allow the entry of an address to display in the memory dump view.

Processes in Windows CE have a 32MB virtual address space each.
0x0200000016Process 1 (32 MB)
0x03ffffff16

0x0400000016Process 2 (32 MB)
0x05ffffff16

…

0x6400000016Process 32 (32 MB)
0x65ffffff16

The Microsoft Windows CE documentation has this to say about loading processes into memory:

When a process initialises, the OS stores in the slot that is assigned to the process
all of the dynamic-link libraries (DLLs), the stack, the heap, the application code,
and the data section for each process. DLLs are loaded at the top of the slot,
followed by the stack, the heap, and the executable file (.exe). The bottom 64 KB
is always left free.

MSDN Library, July 1999

A local (relative) address displayed from within a process is zero-based at the start of the process’
virtual address space. Therefore if process 2 displays an address of 0x105016, this address is really
0x0400105016 in the system’s virtual address space. Analyser understands this, and if you enter a
relative address into the locate address dialog box Analyser will compensate for this offset. If you
enter an absolute address with the full eight hexadecimal digits, Analyser will understand this, too.

If the address is both within the memory space of the current process and is viewable, then the
memory dump view will jump to display the data at the desired location.

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

17

Modifying data
Analyser allows the user to modify data in the address space of the current process. Double-tapping
on a line of data in the memory dump view will display the “Modify Data” dialog box.

The original data is displayed in the current viewing format as well as in hexadecimal notation. The
user can enter new data in the same format using the software keyboard. The “Evaluate” button
checks the validity of the new data, and translates it into hex. The “Modify” button attempts to
write the new data into memory over the old data.

Data cannot be modified while it is being viewed as disassembled SH3 mnemonics. Code must be
manually assembled into hex machine code, and entered into memory using the hex viewing format.

When entering hex data, there must be an even number of hex digits in the new data. Single digits
cannot be translated into binary data.

Viewing and entry
format

User-entered
data

Original data

Evaluation button

User data
translated to hexData in memory

dump view

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

18

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

19

PlayTime user guide
Purpose
PlayTime is a simple “test bed” application, designed to be modified while in memory. In
conjunction with a debugger or memory dump program such as Analyser, the student can learn
about the structure of data and its layout in memory. PlayTime has been designed with a simple set
of exercises in mind. Various types of data can be modified by the user, and the effects of these
modifications can be viewed either within PlayTime itself or by using Analyser.

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

20

Using Anlayser with PlayTime!
1. Start PlayTime using the Start menu.

2. Start Analyser using the Start menu.

3. Tap the “Select Process” buttonwithin Analyser, then select “playtime.exe”.

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

21

4. Use the View menu within Analyser to change to different viewing formats. The first segment
of the process memory space is taken up by the process’ code. Switch to Unicode format and
use the “Buffer Up/Down” buttons to search for text data and string variables. Use Hex format
to compare Unicode data, ASCII data and their hexadecimal values. Keep in mind that the SH3
processor (which is driving the Windows CE box) uses little-endian storage.

5. Use the “Find Addresses” button within PlayTime and the “Locate Address” button within
Analyser to examine the data associated with PlayTime’s exercises. Modify the different data
regions using Analyser, and examine the results in PlayTime.

6. Use PlayTime to learn how the different formats of data work. Manually compile some SH3
code.

“Find Addresses” in PlayTime

“Locate Address” in
Analyser

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

22

Main window and command bar
To start PlayTime, use the Start menu.

When PlayTime is loaded, the main window appears on the screen.

The help button provides a brief overview of PlayTime.

Command Bar
Utility buttons
and close button.

Exercise buttons

Program build
information

Exercise
feedback areas

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

23

The “show strings” button displays the content of the user-modifiable strings.

The “find addresses” button assists in locating the user-modifiable areas in memory by displaying
the addresses of these regions.

Quit PlayTime by tapping the “close” button.

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

24

Description of exercises
Program info buffer
The program info buffer is a segment of memory initialised to a paragraph of text concerning
PlayTime. It can be modified by using Analyser, and dumped to the screen by tapping the
“Program Info” button..

The image on the right is what the program info buffer looks like in memory, viewed with
Analyser. The buffer is initialised with the information text, and then padded out with ‘>’
characters.

This is the code used to initialise the data in the C programming language:

#define MAX_STRING 400
TCHAR szProgInfo[MAX_STRING];
UINT uIndex;

for (uIndex = 0; uIndex < MAX_STRING; uIndex++) {
szProgInfo[uIndex] = L'>';

}
LoadString(hInstApp, IDS_PROGINFO, szProgInfo, MAX_STRING);

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

25

Integer array
PlayTime provides an array of four integers which can be modified and then summed together by
tapping the “Add Ints’ button. The resulting sum will appear in the adjacent output area.

The image on the right is how the integer array is represented in memory, viewed with Analyser.
The array is initialised to a sequence of integers summing to 11111010.

nAddInts[]
0 1111110 0x00002b6716
1 2222210 0x000056ce16
2 3333310 0x0000823516
3 4444410 0x0000ad9c16

Sum 11111010 0x0001b20616

The data is stored in memory using little-endian addressing. This means that when a word or longer
data structure is placed in memory, the least significant byte (LSB) is stored at the lowest address,
followed by the next significant in order up to the most significant byte (MSB) at the highest
address. In Analyser, the data appears left to right from LSB to MSB. This is intuitive for single
byte data, but reads backwards to how we would write a four digit hex word or an eight digit hex
double-word. The double-word 0x1234567816 would appear as “7856 3412” in Analyser.

This is the code used to initialise the data in the C programming language:

int nAddInts[4];
UINT uIndex;

for (uIndex = 0; uIndex < 4; uIndex ++) {
nAddInts[uIndex] = 11111 * (int) (uIndex + 1);

}

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

26

Double array
PlayTime provides an array of four double precision floating point numbers which can be modified
and then summed together by tapping the “Add Doubles” button. The resulting sum will appear in
the adjacent output area.

The image on the right is how the array of doubles is represented in memory, viewed with Analyser.
This array is likewise initialised to a sequence of floating point numbers, summing to 10.00.

dAddFloats[]
0 1.0010 0x3ff000000000000016
1 2.0010 0x400000000000000016
2 3.0010 0x408000000000000016
3 4.0010 0x401000000000000016

Sum 10.0010 0x402400000000000016

Floating point numbers in Windows CE are stored in the IEEE floating point format. The number
is split into three components: the sign (+ / -), the mantissa (the sequence of digits that comprise the
number, ignoring the decimal point), and the exponent. The number is reconstructed using the
formula

() ()10127
2 2.11 −⋅⋅−= ES Mnum

In 32-bit IEEE format, 1 bit is allocated as the sign bit, the next 8 bits are allocated as the exponent
field, and the other 23 bits contain the normalised mantissa. When converting a number into
floating point binary, the digit values are as follows:

… 8 4 2 1 •••• 1/2 (0.5) 1/4 (0.25) 1/8 (0.125) 1/16 (0.0625) …

As an example, the steps to convert 9 97/12810 (9.757812510) into IEEE floating point are shown
below.

This is the code used to initialise the data in the C programming language:

double dAddFloats[4];
UINT uIndex;

for (uIndex = 0; uIndex < 4; uIndex++) {
dAddFloats[uIndex] = (double) (uIndex + 1);

}

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

27

1. Convert 9.757812510 to binary floating point notation.
910 = 8 + 1� 10012
0.757812510 = 0.5 (1/2) + 0.25 (1/4) + 0.0078125 (1/128) � 0.11000012

∴ 9 97/12810 = 1001.11000012
2. The exponent is currently 0. However, we have to shift the number into 1.xxxxxx… format.

1001.11000012 � 1.00111000012 * 23

The exponent is therefore 310. The exponent field has a 12710 offset.
∴ E = 310 + 12710 = 13010 � 010001102

3. A leading 1 before the decimal point is assumed for the mantissa, so
M = 000111000010000000000002

4. The number is positive, so the sign bit is 0.
S = 0

The final representation of the number is
Sign Exponent Mantissa

0 01000110 00011100001000000000000
Bit 31 30 23 22 0

which gives the double-word 0x230e100016.

There are some special representations for exceptional cases
Sign Exponent Mantissa

? 0xff 0x00 + / - Infinity
? 0xff NOT 0x00 NaN (Not A Number), Overflow, Error, etc.
? 0x00 0x00 Zero
? 0x00 NOT 0x00 Smaller than smallest precision

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

28

Strings array
PlayTime provides an array of eight strings that can be modified and then sorted in memory. To
display the current contents of the string array, tap the “Display Strings” button on the command
bar.

To sort the array alphabetically and then display the result, tap the “Sort Strings” button.

The image on the right is how the array of strings looks in Analyser. Each string is padded out with
the number of its position in the array. When the “Sort Strings” button is tapped, these strings are
moved around in memory to place them in alphabetically sorted order. The sorting performed by
PlayTime is case insensitive.

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

29

szSortStrings[]
0 “This is string 0”
1 “This is string 1”
2 “This is string 2”
3 “This is string 3”
4 “This is string 4”
5 “This is string 5”
6 “This is string 6”
7 “This is string 7”

This is the code used to initialise the data in the C programming language:

#define SORT_STRING_LENGTH 29

TCHAR szSortStrings[SORT_STRING_LENGTH * 8];
TCHAR *szSort0,

*szSort1,
*szSort2,
*szSort3,
*szSort4,
*szSort5,
*szSort6,
*szSort7;

szSort0 = szSortStrings;
szSort1 = szSort0 + SORT_STRING_LENGTH;
szSort2 = szSort1 + SORT_STRING_LENGTH;
szSort3 = szSort2 + SORT_STRING_LENGTH;
szSort4 = szSort3 + SORT_STRING_LENGTH;
szSort5 = szSort4 + SORT_STRING_LENGTH;
szSort6 = szSort5 + SORT_STRING_LENGTH;
szSort7 = szSort6 + SORT_STRING_LENGTH;

for (uIndex = 0; uIndex < SORT_STRING_LENGTH - 1; uIndex++) {
szSort0[uIndex] = L'0';

}
wsprintf(szSort0, L"This is string 0");

...

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

30

In the example below, the strings were modified using Analyser. When the “Sort Strings” button
was tapped, the strings were moved into sorted order in memory.

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

31

Modifyable code block
PlayTime provides a segment of its code space for modifying. Using Analyser, the user can
manually compile SH3 assembler mnemonics and enter them into the code space in hexadecimal
format. Tapping the “Exec Code” button then executes this code and displays the return value.

The modifiable region in memory is initialised to a C
function which fills an array and returns a hexadecimal
value. The image on the right shows the disassembled C
function, viewed with Analyser. This region of memory
can be modified by Analyser in hex viewing mode, and
the function can be replaced with manually assembled
user code.

The image on the right shows the assembled code.

Function source code in C:

DWORD ExExecuteCode(void)
{

DWORD dwBlock[40];

dwBlock[0] = 0x1234;
dwBlock[1] = 0x1234;
dwBlock[2] = 0x1234;
dwBlock[3] = 0x1234;
dwBlock[4] = 0x1234;
dwBlock[5] = 0x1234;
dwBlock[6] = 0x1234;
dwBlock[7] = 0x1234;
dwBlock[8] = 0x1234;
dwBlock[9] = 0x1234;
dwBlock[10] = 0x1234;
dwBlock[11] = 0x1234;
dwBlock[12] = 0x1234;

return (0xabcd);
}

AdAstra Analyser v1.06 and PlayTime! v 0.04a Printed 30 January 2001

32

Analyser and PlayTime user guides last page

